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Chapter 1

Introduction

This work focuses on processing of images captured with digital still camera. Why digital

still cameras? Because nowadays these are, arguably, the most used, common and cheap

mean of acquiring digital images; and images are the most important way of communi-

cation between people. Digital still camera, as well as human eye, is a non-linear image

device. Therefore, a dedicated algorithm must imply non-linear techniques. To address

this problems, two methods are at hand: one relies on using non-linear operators1 and

the other intercalates non-linear transformations with linear operators.

In this work we shall focus on developing non-linear operators. The starting point

lies in the homomorphic theory introduced by Oppenheim, [1] and in logarithmic image

processing models proposed, by Jourlin–Pinoli and Pătraşcu and lately by Vertan. These

are the known solutions and the arising question if these are the only ones? A mathe-

matical investigation that set the boundaries for such models, an analysis of the existing

ones and means for deriving new models is the goal of the chapter 2. This part is a more

theoretical one and provides the background for the following practical applications.

The second part of the current work details two practical applications that enhance

images acquired with digital still camera. But before describing the actual methods, there

is need for a short presentation of the constructive characteristics of cameras, so to be

able to adapt the method to the given device. The overview of the camera model and of

the implicit image processing algorithms will be provided in chapter 3.

1In the current paper we shall describe non-linear models of image representation. These models are

non-linear in respect to the widely used real intensity based models. The operators (addition and scalar

multiplication) derived within the new structures are linear in respect to their parent model. However if

the reference are the operators from the classical real numbers space, the new operators are non-linear.

For simplicity of formulation, we shall name them ”non-linear operators”.
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Once the theoretical background and the particular feature of the input device are

known, the processing method will be in focus. In fact two applications are addressed.

One regards digital still cameras’ most important problem. That is image degradation

due to motion blur when high exposure time meets hand-held devices. The proposed

solution, as presented in chapter 4, uses a shorter exposure time for the acquisition of the

subject image to reduce the motion blur and, consequently, amplifies the recorded images

by using information from a second (namely a reference one) picture of the same scene.

The second application, described in chapter 5, refers to dynamic range enhancement of

the images acquired with digital still camera. The current approach uses the non-linearity

of logarithmic image processing models to push further the results of the typical bracketing

solution. The classical bracketing algorithm combines several differently exposed frames

to reconstruct the high value of the gamut of the scene. In the current work, we shall prove

that adding weights to the input frames and non-linear image fusion, boost the resulting

dynamic range, leading, in fact, to an over-sampling of the output space. We named this

algorithm ”log–bracketing”. Even if the algorithm addresses color images, perhaps one of

its most important application will be in digitizing analog radiographs. The most simple

solution for the mentioned digitization is to photograph the analog X-ray film; however

this choice has the drawback of decreasing the dynamic range from 212 levels (36 dB),

in the original analog image, to 8 bits (24 dB) in the resulting digital one. The loss of

information may be counterweighted by the use of presented algorithm.

The last chapter will summarize the achievements and will conclude the current work.

It will also provide a look to further continuations.
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Chapter 2

Non-linear Image Processing Models

The Logarithmic Image Processing (LIP) Models represent an alternative to image pro-

cessing with real based operations. Under certain circumstances, such a combination,

named Classical Linear Image Processing (CLIP) - [2] proves its limitations. For in-

stance, let us mention the upper range overflow, which is brutally solved by truncation.

Consequently, more elaborate structures appeared, such as the LIP models: Jourlin–Pinoli

model, [3], and Pătraşcu model [4]. Recently a new model, which turns aside from the log-

arithmic form, has been proposed by Vertan et.al, [5]. In such a context, the ”logarithm”

syntagma should be replaced with the more general ”non–linear” one.

The non-linear image processing (NIP) models proved their usefulness in various ap-

plications like illumination correction, [6], contrast enhancement, [7], [8], edge detection,

[5], dynamic range enhancement, [8], [9], [10]. The improve in respect to the classical

methods has been proven. Yet we believe that the best results have not been achieved.

Further advance is reachable by extension of the existing NIP models.

Before detailing the actual expanding technique, we investigate the theoretical bound-

aries of a NIP model. Once we shall identify these limits, we shall propose various methods

to extend the current model by either constructing new models, or by parametrization.

2.1 Mathematical Background of Non-Linear Image

Processing Models

The mathematical construction of such a non-linear model may start by defining the

operational laws (the addition and the scalar multiplication) or, equivalently, by finding

the function that maps the investigated model definition set onto the real number algebraic
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2.1. Mathematical Background of Non-Linear Image Processing Models

structure and, hence, acts as a generative mapping. We will focus on the second alternative

and we will investigate the restrictions that have to be imposed to the mapping (generative

function), such that the new model will lead to a consistent mathematical form and,

thus, will exhibit practical properties. Usually the model forms a vector space or a cone

structure, [11], [12]. In this section we shall investigate the nature of the definition set, the

means of laws determination, the closing properties and we shall discuss the requirements

needed to form a vector space. The hereby mathematical formulation is a particular case

of the more general homomorphic theory, applied to discrete images.

2.1.1 Vector/Cone Space Structure

Let us consider a function, Φ : E → F . Within this choice, the set E is the image

definition set. Typically, if the image values have intensity meaning, the set is bounded.

The function Φ defines the model structure and maps the image definition set, E, onto

a subset of real numbers, F . Furthermore, we shall add two operations to the given set,

E: addition of two elements of the set, ⊕, and multiplication with an outer scalar, ⊗.

Given a real scalar, α ∈ K ⊆ R, and two elements of the set, u and v, we can determine

the exact formulas for the mentioned operations using the generative function Φ:

Φ(u⊕ v) = Φ(u) + Φ(v) (2.1)

Φ(α⊗ u) = αΦ(u) (2.2)

Equations (2.1) and (2.2) are the conditions that must be fulfilled by a homomorphism

between two similar algebraic structures. In our approach, we assume the function Φ to

be known and we intend to use the mentioned relations to determine the analytic form

of the addition and scalar multiplication laws. In such a case, the simplest solution is

achieved when the function is a bijection and, hence, the laws are uniquely determined.

With respect to the bijectivity constraint (and, hence, the existence of Φ−1), the

definition laws are determined by:

u⊕ v = Φ−1 (Φ(u) + Φ(v)) (2.3)

α⊗ u = Φ−1 (αΦ(u)) (2.4)

A short analysis of equation (2.1) and (2.2) written for the boundary points of the

definition set E will lead to an infinite width of the target set F : [0; +∞).
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2.1. Mathematical Background of Non-Linear Image Processing Models

An important feature of the NIP models is the closing property of both addition and

scalar multiplication. This states that the sum of any two images should lead to another

valid image and, respectively, any amplified or attenuated image should be an image:

∀u, v ∈ E z = u⊕ v ⇒ z ∈ E

∀u ∈ E,∀α ∈ K z = α⊗ u⇒ z ∈ E
(2.5)

These properties hold under the assumed bijectivity hypothesis.

Given the two operative laws, ⊕, ⊗, the vector set E and the outer scalar set K,

the formal definition of the vector space implies several properties. The addition law

must be associative, commutative, must have identity element and inverse element. The

distributivity must hold for scalar multiplication over vector addition and for scalar mul-

tiplication in the field of scalars. Scalar multiplication must have identity element and

must be compatible with multiplication in the field of scalars.

The commutative, associative and distributive properties of the implied laws are im-

portant because the order of operations should not matter in a weighted sum of images.

Under the assumed hypothesis of bijective application, these properties are verified.

The existence of the identity element, u0, with respect to the addition, implies further

condition over the mapping function, Φ. The mentioned restriction is a consequence of

the isomorphic behavior:

∀u ∈ E, ∃u0, u⊕ u0 = u⇔ Φ(u0) = 0 (2.6)

The existence of addition inverse element, u− is conditioned by a symmetry towards

0 of the generative function. It makes the difference between vector and cone space.

However, since this is not of paramount importance for the physical interpretation of

such a model, it is not un–common to avoid it. The consequence is that, in many cases

the NIP model has a cone structure.

Similarly with addition, the identity element of the scalar multiplication has to be 1:

∃α1,∀u ∈ E − {u0}, α1 ⊗ u = u⇔ α1 = 1 (2.7)

In conclusion, the sufficient conditions that a generative function, Φ, has to fulfill in

order to generate a usable non-linear image processing model are:

• The target F should be at least [0;∞) in the case of cone structure;

• Φ should be bijective;

• Φ(u0) = 0.
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2.2. Non-linear Image Processing Models

2.2 Non-linear Image Processing Models

2.2.1 Jourlin – Pinoli Model

In the firstly proposed LIP model [3], [12], the intensity of an image is completely mod-

elled by its gray tone function u (which has the physical interpretation of an absorption

function), with u ∈ [0, D). The usual convention is that D represents the maximum ab-

sorption (perfectly black image) while 0 represents the total reflective object. In the LIP

model, the addition of two gray tone functions u and v and multiplication of u by a real

number λ are defined in terms of usual R operations as:

u⊕ v = u+ v − uv

D
(2.8)

and respectively:

λ⊗ u = D −D
(
1 − u

D

)λ

. (2.9)

The underlying isomorphic function is:

ΦJ(x) = − log(1 − x). (2.10)

2.2.2 Pătraşcu Model

The logarithmic model introduced in [13] works with bounded real sets: the gray–tone

values of the involved images, defined in [0, D), are linearly applied onto the standard set

(−1, 1). This interval plays the central role in the model: it is endowed with the structure

of a linear (moreover Euclidean) space over the scalar field of real numbers, R. In this

space, the addition between two gray-levels, u and v is defined as:

u⊕ v =
u+ v

1 + uv
(2.11)

while the multiplication of a gray level, u with a real scalar, λ ∈ R is:

λ⊗ u =
(1 + u)λ − (1 − u)λ

(1 + u)λ + (1 − u)λ
. (2.12)

The underlying isomorphic function is:

ΦP (x) =
1

2
log

1 + x

1 − x
. (2.13)
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2.2. Non-linear Image Processing Models

2.2.3 Vertan Model

A later proposal for such model is the so called ”pseudo-logarithmic” model proposed by

Vertan et al., [5], [8].

The pseudo-logarithmic model restricts the gray tone definition to E = [0, 1) range.

The addition of two gray levels, u and v, is defined as:

u⊕ v = 1 − (1 − u)(1 − v)

1 − uv
(2.14)

and the multiplication with a scalar constant, α is:

α⊗ u =
αu

1 + (α− 1)u
(2.15)

The underlying generating isomorphism is:

ΦV (x) =
x

1 − x
, (2.16)

while its inverse function is:

Φ−1
V (y) =

y

1 + y
, (2.17)

As observed from the equation (2.16) above, the proposed homomorphic function is not

logarithmic, but it closely mimics that behavior, which justifies the “pseudo-logarithmic”

name used for this model. By comparison, the Jourlin–Pinoli and Pătraşcu models use

logarithmic generative function.

If discussing the mathematical structure of models, since the generative functions of

the Jourlin–Pinoli and Vertan model are defined over asymmetrical sets, the structure is

of a cone space. Only Pătraşcu model has, truly, a vector space structure.

2.2.4 Piecewise Linear Model

The exercise developed in section 2.1, beyond pointing to a short-cut to the mathematical

analysis of known models, gives the user the flexibility to choose the generative function

according to his application particularities. Here, we shall investigate a general problem.

All of the known models share the same complex behavior, which leads to the practical

problem of lack of efficiency in implementation [14]. Hence, it make sense to try to build

a piecewise linear model. Thus, we shall choose a piecewise linear generative function

that complies with the rules determined in section 2.1 and we derive the remaining of the

model later.
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2.2. Non-linear Image Processing Models

Let us consider a generative function composed of n segments. Such a function and

its inverse have the form:

φL(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1x+ b1, x ∈ [x1, x2)

a2x+ b2, x ∈ [x2, x3)

. . . . . .

akx+ bk, x ∈ [xk, xk+1)

. . . . . .

anx+ bn, x ∈ [xn, xn+1)

+∞, x ∈ [xn+1,+∞)

(2.18)

and respectively:

φ−1
L (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y−b1
a1
, y ∈ [y1, y2)

. . . . . .

y−bk

ak
, y ∈ [yk, yk+1)

. . . . . .

y−bn

an
, y ∈ [yn, yn+1)

xn+1y ∈ [yn+1,+∞)

(2.19)

In the equations above, the offset (intercept) constants, b1, b2, . . . , bn, are determined from

the continuity constraints imposed to both of the functions.

In order to determine the operational laws, one will replace the generative and inverse

generative function formulas ( eq. (2.18) and (2.19) ) in equation (2.1). The proposed

model is function of the a1, a2, . . . , an, x1, x2, . . . , xn, xn+1 parameters. To determine their

values, one may choose a non-linear model as target and perform parameter regression.

But in section 2.1 we showed that it is no need to do that, because the known models

span just a little part of the valid functions range. We have some degree of freedom in

choosing the parameter set according to the envisaged application. For instance let us

aim at efficient implementation. We consider the choice of line slopes a1, a2, . . . , an as

power of 2 as being more important, such that the model implementation uses bit shift

instead of the expensive multiplication and, especially, division. Under such an approach,

the abscissa breaking points, x1, x2, . . . , xn, xn+1, is a free parameter and is to be found

after minimizing the mean squared error (or other similar criteria) in respect to a target

model. We stress that given a number of segments, n, the parameters are to be found

once in an off-line calculus and used straight–forward in practical real-time applications.
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2.3. The Generating Function as Composite Function

2.3 The Generating Function as Composite Function

The basic result that allows us to extend the NIP (LIP) models comes from the algebraic

theory [15]. It states that the composition of two valid homomorphisms leads to another

homomorphism. Let be ψ : E1 → E2, a homomorphism from E1 to E2 and let φ : E2 → F2

be a homomorphism from E2 to F2, then the composite function ρ = φ◦ψ = φ(ψ) : E1 →
F2 is a homomorphism from E1 to F2. Under such a construction we choose φ to be

the generative function Φ of a known NIP model, while ψ may be a real function with

bounded domain and target set and the result is a valid new NIP model. One may go

even further: it is not really necessary to have the ψ function a homomorphism, but only

bijective function; even in such a case the results is a valid generative NIP model function.

Examples of such bounded bijective function may include:

• linear transforms: ψ(x) = ax, a ∈ R − {0};

• afine transforms: ψ(x) = ax+ b, a ∈ R − {0}, b ∈ R;

• power function: ψ : [0, 1] → [0, 1], ψ(x) = xm,m ∈ [0,+∞);

2.3.1 Parametrization

The parametrization is naturally achieved if the ψ function is a parametric function and

in all the cases uses the same sets. Such an example may be the family of ”power-type”

functions:

ψm : [0, 1) → [0, 1), ψm(x) = xm,∀m ∈ (0,+∞) (2.20)

We note that all members of this family are bijective functions.

For instance, if we compose this family of functions with the generator mapping of

the pseudo-logarithmic model, one will obtain a set of parametric NIP models. The base

function is:

Φm : [0, 1) → [0,+∞),

Φm(x) = Φ (ψm(x)) =
xm

1 − xm

(2.21)

The inverse function is:

Φ−1
m (y) = ψ−1

m

(
Φ−1(x)

)
= m

√
y

1 + y
(2.22)
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2.3. The Generating Function as Composite Function

The mathematical formulas of the so-generated model are found if one replaces formulas

(2.21) and (2.22) in equations (2.3) or (2.4). For example, the general formula for addition,

⊕m becomes:

u⊕m v = ψ−1
m (ψm(u) ⊕ ψm(v))

=
m

√
1 − (1 − um)(1 − vm)

1 − umvm

(2.23)

where ⊕ is, in this case, the pseudo-logarithmic addition.

We have to note that the ”power” function is the hereby choice and any other bi-

jective parametric function will do. This family of functions is appropriate for means of

exemplification, since it includes convex functions (for m > 1) as well as concave ones (for

m < 1) and different behaviors are at hand. For m = 1 the pseudo-logarithmic model is

retrieved.

10



Chapter 3

Digital Still Camera

Historically the photography counted more than 150 years of evolution. Lately, the tech-

nological advance pushed the photography in the digital era. In this chapter on overview

of the most important constructive features of the digital still cameras will be provided.

The nowadays digital cameras may be classified in two categories: single-lens-reflex

(SLR - professional and expensive) and consumer (cheaper but less qualitative). However

the construction of both types implies the use of several blocks:

• Optical System;

• The image sensor;

• The post processing image core.

If the optical system goal is to focus the scene image as good as possible on the

image sensor, the undesired effects of a less qualitative system are geometrical artifacts.

However, because the geometrical distortions of the image are beyond the range of the

current study, we shall only remind their existence and avoid detailing them.

3.1 Image Sensor and Exposure

The camera’s photo-detectors (which may be of CCD or CMOS type) act according to

an accumulative law. The incident light λ(t) is integrated over the exposure time, Texp to

produce the reported output intensity:

Λ(Texp) = k

∫ Texp

0

λ(t)dt , (3.1)

11



3.2. Image Processing Algorithms

where k is a system constant. An insight over this constant is given by the APEX equation,

which binds the exposure time, aperture and the incident light:

EV = − log2(Texp) + 2 log2N =
Λ · S
K

, (3.2)

where EV is the exposure value, the log of Texp forms the time value (TV), N is the

relative diaphragm opening (by taking the log, the aperture value, AV, is formed), Λ

is the cumulated incident light, S is the sensors sensibility (or for digital cameras - the

amplification) and K is a known constant (given by the specific of the camera).

Once the intensity of the light has been acquired in analog form, analog to digital

conversion must take place. Conversion to 12 bits is common for consumer camera, while

professional ones may go up to 14 bits. The currently digitized image is in the ”RAW”

format, in the sense that one pixel stores only one component of color (red, green or blue),

which corresponds to the color filter placed in front of the original photo-detector. The

spatial distribution of colors typically follows the Bayer format, [16], implying that it uses

twice as many green pixels as red or blue.

3.2 Image Processing Algorithms

In order to transform the RAW image into one that may be shown on common displays

a set of image processing algorithms have to be implied. This set includes:

• De-noising and biasing;

• De-mosaicking - which completes the color for all pixels, but often with reducing

the color depth to 8 bpp;

• White balance - which tries to compensate for color deviation introduced by the

light source;

• Gamma correction - which adapts the image to the non-linear behavior of the typical

CRT display

The main idea is that the set of image processing algorithms implied by the camera

transforms the final image into a non-linear replica of the intensity subject image. Instead

of accurate determination of the effect of each such block, it is common to model the

camera as a black box described by a function called Camera Response Function (CRF)

or camera transfer function (CTF).

12



3.3. Estimation of Camera Response Function

3.3 Estimation of Camera Response Function

The subject of estimating the camera response function has been widely debated in lit-

erature. The first attempts were based on taking a single exposure of the uniformly

illuminated chart containing patches of known reflectance, such as the Gretag Macbeth

chart [17]. The Gretag Macbeth Color Checker provides a subject scene with uniform

patches and intensity varying over the entire range of interest. The CRF is estimated

in the given set of brightness values and interpolated in the rest. However, the pro-

cess is quite complicated and can only be performed in restrictive conditions (e.g. the

environment illumination must remain un-changed), which are not always accessible.

Later attempts were based on the Debevec and Malik observation, [18], which states

that a set of differently exposed images contain, usually, enough information to recover

the CRF (denoted here by g) using the images themselves.

If the scenario conditions include the same scene, aperture number and sensors am-

plification as constants, then, by taking into account the right term of equation (3.2), the

measured intensity is linearly dependent of the exposure time. To be more precise, let us

assume that images A and B of the same scene were photographed with different exposure

times tA and, respectively, tB. Given a photo-detector, its charge from the two images

must preserve the same ratio as the exposure time. Now, if we come to the reported pixel

values uA and uB, we get the basic CRF equation:

g(uB) =
tB
tA
g(uA) . (3.3)

Recovering g from the equation (3.3) is a difficult task, [19]. Certain restrictions have

to be imposed on g. The minimum irradiance, 0, will produce no response of the imaging

system, hence g(0) = 0. The maximum irradiance is an unrecoverable parameter, but

the sensors output is limited by a saturation level in the photo-detectors, umax, therefore

there is an upper-bound : g(umax) = D. The monotonic behavior of g is, also typical

assumption. Mann and Picard, [20], proposed a gamma-like function for g, while Mit-

sunaga and Nayar, [21], used low degree polynomial regression. Debevec and Malik [18]

used a smoothness constraint and recovered the response using non-parametric model of

g, sampled at certain values, and represented it by a vector.

13



3.3. Estimation of Camera Response Function

3.3.1 Logarithmic Multiplication

An alternative to estimate the exact values of a digital camera transfer function is an

approximation of the variation of exposure by using the multiplication according to the

logarithmic model proposed by Jourlin - Pinoli.

Figure 3.1: Transfer function approximation for a consumer digital camera (with dotted

line) compared with amplification of the Jourlin – Pinoli model, presented with continuous

line.

The starting point in this approximation lies in the fact that photographic film was

built to follow the Weber law. This law, [22], describes the response of the human eye to

a linear variation of the stimulus as being logarithmical. The consistency with the Weber

law is one of the properties of the LIP model proposed by Jourlin – Pinoli, as showed in

[23]. Once the digital camera had come out, they have followed the same pattern as their

film counterparts; this implied the non-linear response characteristic.

Thus, as been showed in [24] and [25], we should expect minimum differences between

a camera CRF and logarithmic scalar multiplication. This statement is proved by the

example showed in in figure 3.1.
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Chapter 4

Under–exposed Image Amplification

Not too long after their appearance in the early 90’s, digital still cameras (DSC) have

become the common way of acquiring images. Nowadays, the main direction seems to be

that of decreasing the size and weight of imaging devices, which has reached a pinnacle

with Mobile Phone Cameras (MPC). At the same time the camera producers engage with

tremendous efforts in the Megapixels race.

The trend of miniaturization mentioned above is imposing design modifications such

as reducing the size of optics and of photo-sensible area. If we discuss these issues from

an end-user point of view, the problem is that of increased susceptibility of images to

blur from shaking hands [26]. The small photo-sensible area diminishes the number of

collisions in the photo-voltaic effects and, therefore, it reduces the correlation between

the incident light and the reported image intensity. On the other hand, the small photo-

sensible area decreases picture angle. Since human hand jitter is always present, [27], the

small picture angle increases the chances that the relative motion between the camera

and the scene during exposure time becomes larger than a pixel size and thus leading to

visible motion blur.

Since this phenomenon can significantly degrade the visual quality of images, pho-

tographers and camera manufactures are frequently searching for methods to limit the

effects. This problem has been widely studied and academic literature and industrial

research abounds with attempts to deal with it. We may divide these approaches in two

categories. This first approach tries to eliminate the effects of the motion blur, meaning

that there will be a normal image acquisition (with a long enough exposure time that

includes blur) and subsequently camera trajectory is estimated in order to restore it. The

restoration and the estimation processes may be simultaneous and real-time (the so-called
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4.1. The Amplification Algorithm

optical image stabilization, [28]) or consecutive and digital (by means of de-convolution,

[29], [30]). However this alternative implies the use of motion sensors (which came as an

extra circuit) and therefore contradict the size-diminishing goal.

The second approach works on avoiding the circumstances that generate motion blur.

This is achieved by reducing the exposure time below the ”motion limit”. The motion

limit may be based on the ”q over f35” rule of thumb [31] or dynamically deduced from

computing the misalignment on consecutive frames for more precise indication of camera

motion [32]. This alternate solution may be easily implemented on existing digital camera

hardware, without any effects on size. However, if such a solution is chosen, the under-

exposed image must be amplified so to provide proper luminance and color saturation

level. The problem implies multiplication of a given image to a desired one. The multi-

plication must avoid introducing image artifacts that will decrease the perceived image

quality. We will focus on this solution and, as it was shown in section 3.3.1, the use of

Logarithmic Image Processing Model or, by extension, of any NIP model provides means

for solving the mentioned problem.

4.1 The Amplification Algorithm

A typical low-light enhancement method firstly captures an image with a short exposure

time. This image is hand motion free but under-exposed. Next, the image is amplified

until its luminance and color levels match that of a reference. The reference may be

intrinsic (e.g. as the one provided by equation (3.2) with a large value for ISO parameter

S) or it may be an external one, (other image as described in [33]).

The reference in the latter approach is a correctly exposed image, which may be

blurred. This provides additional information than a single number derived from equation

(3.2). For the currently proposed solution, an important demand is the relative short

period between the capture moments of the two required images: the reference and the

main image. This helps prevent large geometrical misalignments and, hence, avoid the

time-consuming image registration (as is the case of [33]). Such a demand is easily met in

the case of the CMOS sensors where consecutive read-out may be taken without discharge

of the image sensor [34].

Now, let us denote the main, low-light, image, which is of N × P resolution with

F (i, j) with i = 1, . . . N and j = 1, . . . , P . The reference image (which we shall denote

by G(i, j)) may have the same or a lower resolution than the subject image. If different
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4.1. The Amplification Algorithm

resolutions are implied, one may a use a nearest neighbor interpolation to even the image

sizes (to the high resolution N × P ).

The enhancement method works in two steps; first, it performs a rough global ampli-

fication; later, it refines individual pixels by taking into consideration local information.

In the following paragraphs, we shall proceed with describing the actual method.

Given the two images, G and F , the rough amplification is performed by considering

a reduced set of (spatially matching) pixels from each image: GS ⊂ G and, respectively

FS ⊂ F , and by means of linear regression, computing a pair of coefficients, c1 and c2,

[35], so that:

GS ≈ c1FS + c2 (4.1)

The image computed using the coefficients from equation (4.1), F1 = c1F + c2, corre-

sponds in most cases with the standard (simple reference) amplification methods. How-

ever, we must observe that the results are highly dependent on the choice over the set of

reduced pixels, which may or may not be representative for the image. If full resolution

image is used then blur artifacts may be transferred from the reference image to the main

image. Furthermore, if classical real addition and multiplication are used in equation

(4.1), the result is sensitive to range overflow. Therefore, an implementation based on

non-linear amplification (which let us remember that is closed) is more practical.

The second step of the enhancement, the fine amplification is performed locally, in the

sense that different amplification factors are used for different pixels. To be more explicit,

we shall determine the matrix W (i, j), with i = 1, . . . N and respectively j = 1, . . . P , so

that:

F2(i, j) = W (i, j)F1(i, j),∀i, j (4.2)

The computation of W ’s coefficients relies on the 1-D adaptive filtering theory which

has the obvious advantage of being computationally efficient. The actual implementation

implies the use of a filter with a single adaptive coefficient. But first the 2-D images are

turned into 1-D vectors by arranging them in lexicographic order:

{W (i, j), F1(i, j)} = {W (k), F1(k)}, k = (i− 1)P + j (4.3)

The equation that updates the filter is taken from sign-data LMS (Least Mean Square)

algorithm and it makes use of the fact that the input data, F1(k) is always positive:

W (k + 1) = W (k) + μ(k)e(k) , (4.4)
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where μ(k) is the step size (fixed or variable), the e(k) is the error signal computed as:

e(k) = G(k) − F2(k) (4.5)

For accurate implementation, one may use a fixed step size μ(k) = μ = 0.005 and it

may initialize the filter value with multiplication neutral element W (1) = 1.

As previously discussed, if standard multiplication is used in equation (4.2), range

overflow situations are often encountered in highly illuminated areas. Furthermore, in

the same hypothesis of linear amplification, if one will extend the method to color (multi-

planar) images by replicating the algorithm for each color plane, the resulting image will

have over-saturated colors. In order to prevent these problems we are using non-linear

scalar multiplication.

Practical implementation tends to simplify the described method. To be more precise,

a single coefficient may be used in the rough amplification, eq. (4.1) and a set of reduced

possible values for the fine scaling constant; hence we are able to express the multiplication

by look-up table.

4.2 Results

For demonstration purposes, we considered a low-light scene containing the Gretag Mac-

beth Color Chart placed on a wooden support. The input images (main and reference

image), as well as the results may be seen in figure 4.1. The reference (4.1 subplot (b))

and main image (4.1(a)) were obtained with a consumer camera held in the hands; thus

they are susceptible to motion blur. The under-exposed subject image (4.1, (a)) was

obtained by forcing the exposure value to be EV = −2. The ideal image (which is not

affected by motion blur) was recorded with a tripod mounted camera. As results, we

showed our image (d), the image obtained by described amplification but performed in a

linear space (e) (which is obviously over saturated in the upper part - the wooden support)

and respectively the subject image processed by typical auto-contrast and auto-saturation

algorithms (f). The last possibility is well known and it is used in the world of amateur

photographers; its result suffers from poor color reproduction. Concluding, it is easy to

observe that the best results are obtained by using the two step logarithmic amplification.

Furthermore, we considered an extensive testing procedure, with three scenarios (our

method with logarithmic and respectively linear amplification which includes larger data
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a) b)

c) d)

e) f)

Figure 4.1: (a) Under-exposed subject image; (b) Motion blur-degraded reference image;

(c) Ideal image; (d) Logarithmic amplified image; (e) Linear amplified image; (f) Auto-

Contrast Image.

sets, with different scenes, but under the constraint that there is no misalignment between

the ideal image and the resulting ones. Under these circumstances, we were able to

compute a Normalized Mean Square Error. A short summary of the results may be seen

in Table 4.2. As one can see, the results are degrading if we underexpose more; however

the logarithmic amplification provides the most reliable results in all conditions.
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4.2. Results

LOG LIN Auto

EV =- 1 0.0053 0.0214 0.0120

EV =- 2 0.0063 0.0254 0.0182

Table 4.1: Values of the NMSE for the logarithmic amplification (LOG), linear amplifica-

tion (LIN) and auto-contrast(Auto) if the low-light image was under-exposed with EV=1-

or EV=-2 stops

The method has limited performances in case of underexposed images with more

than EV=-2 (the signal is low enough and noise is amplified) or in the case of sizeable

misalignment between acquired images (our test showed a value of 30 pixels for 5Mpixel

image as the maximum acceptable misalignment). Under such conditions even if our

method is the most reliable, it does not pass a visual inspection. As described, the method

is most suitable for software implementation and most of in-camera processors can handle

the computation. Hardware implementation is possible, but due to method simplicity,

the cost of building dedicated chips may not be compensated by speed improvement.

This method has been described in US patent [34] and in the paper [24]. The method

is part of the package of commercial applications developed by the Smart Imaging division

from Tessera and covered by the mentioned patent.
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Chapter 5

Dynamic Range Enhancement

Most real-world images seen by the human eye contains an impressing number of colors.

Typically, digital camera sensors can capture a lower value dynamic range (in the order of

256), while the human eye, according to the experiments lead by Blackwell [36] can dis-

tinguish up to 10000. Therefore, under certain circumstances there is need for algorithms

that enhance the dynamic range of images acquired by digital still camera.

The straightforward solution to the problem generated by the reduced dynamic range

of digital still cameras is to combine multiple images of the same scene, taken under vari-

ous settings (exposure time, aperture). This approach is generally known as bracketing or

HDR algorithm. The underlying idea is that each of the images that are to be combined

captures with high quality only a certain part of the scene gamut. The bracketing algo-

rithms select, for each pixel of the spatial support scene image, the combination of frames

that provide the best value. That selection is based on the assumption that the multiple

images are perfectly aligned. Thus, an implementation of the dynamic range increase

works in several steps: a first step of image acquisition followed by a possible registration

level (that aligns the multiple images captured from the scene), a step of camera response

function estimation and the actual image combination (fusion, or pixel value selection),

that computes the enhanced image.

5.1 Image Acquisition

The requirement for the input images is to have been captured under different expo-

sures. Taken into account the special features of digital cameras light acquisition, several

solutions are at hand:
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5.2. Image Registration

• Varying exposure time. This is the most used method. The drawback lies in differ-

ences of content between the frames, which may appear for a hand-held camera or

for a scene with moving objects.

• Varying aperture. Since aperture variation leads to different depth of the image,

this solution is usable only for planar images.

• Varying camera scaling constant. This may be achieved either by varying the photo-

sensible area as in the case of Fuji Super CCD, [37], or by varying attenuation of

the optical system, as proposed by Nayar et. al, [38]. Unfortunately both solution

requires constructive modifications.

In conclusion, the most likely approach to be used, especially for static scenes, is to vary

the exposure time of the individual images. In such a case a step of image registration

may be required.

5.2 Image Registration

Image registration means the geometrical alignment of multiple images of a scene, based

on the matching of the content. Image registration is a widely dealt issue in the field of

image processing and several solutions (block matching methods, edges matching methods,

object matching methods or global matching methods) are at hand [39].

The most performing method is considered by many as being the block matching

method. Here, both images are divided in disjoint blocks and each block from the sub-

ject image is searched in the reference image. A criteria that identifies the best match

must be implied. Typical choices are the minimum of sum of absolute differences, the

minimum of sum of squared differences, the maximum of inter–correlation [40]. However

full search of blocks is rather costly from the implementation point of view and simpli-

fied methods came out. Sauer & Schwartz, [41], turn the bi-dimensional problem in two

one-dimensional problems by computing the image projection on two axis and applying

a known registration technique. Albu et. al., [42], move even further, and consider the

orthogonal projection onto a space with binary values.

An alternative to these methods consists from the robust global matching method of

spectrum phase correlation [43], [44]. The underlying idea is based on the translation

property of the Fourier transform, F : a translation in the spatial (or time) domain t of a

22



5.3. Image Fusion

signal x yields a phase shift in the transformed domain.

F [x(t+ t0)] (ω) = F [x(t)] (ω) · e−jωt0 . (5.1)

Therefore, for a pair of non-aligned images, one will find the corresponding shift as

the maximum difference in the phase spectrum of the images. However, the method is

designed to perform only if the images exhibit a similar content and if there is no rotational

misalignment. Our experiments showed that this method is a good compromise between

accuracy of results and efficient computation.

5.3 Image Fusion

5.3.1 Simple Fusion

The image fusion step is the actual dynamic range increasing procedure. A simple ap-

proach for fusing a set of N frames taken by a digital camera under several exposures is

to discard the pixels with saturated values and to average the remaining values [45]. The

frames, denoted by f1, ..., fN , are corrected by the exposure factor EV (i), such that the

pixel located at coordinates (l,m) in the resulting image, is obtained as:

fHDR(l,m) =
1

N0

N0∑
i=1

2EV (i) · fi(l,m) , (5.2)

where N0 is the number of frames having non saturated values at the specified location.

5.3.2 Image Weighting

It is not feasible to assume that independently of the frame exposure value, the camera

outputs the scene brightness correctly. For over–exposed pictures, it is less likely that

pixels having values near the saturation level are accurately recorded. For under–exposed

pictures, values from the lower part of the range suffer the noise influence and their

reported value is corrupted by quantization errors. Instead of precise determination of the

g function, as in the other mentioned approaches, we will simply compute the confidence

that we have in a value given an exposure value.

There are different pairs {Texp, N} (exposure time - aperture) that satisfy equation

(3.2). Most of the digital still cameras available on the market are capable of estimating

the deviation of the exposure value from the set that balances equation (3.2). Thus,
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5.3. Image Fusion

multiple scenes with the same EV may be obtained; averaging the results will decrease

the error of estimation.

Given an exposure value, an image of the usual Macbeth Color Checker chart should

exhibit a known set of values. In reality, the camera outputs different brightness inten-

sities. The sum of the squared differences between the output values and the expected

values normalized by the expected value is used a measure of error, ε. A low order polyno-

mial regression is implied to extend the domain of the error function from the 24 original

values (the number of patches in the chart) to the [0,255] required range. The error func-

tion is represented as matrix were the rows are bind to the exposure value parameter,

while the columns span the possible gray-levels: ε → ε(EV, u). The confidence function

is computed similarly to a fuzzy negation from the globally normalized error functions:

μ(EV, u) = 1 − ε(EV, u) , (5.3)

where, again, EV denotes the exposure value and u denotes the gray level.

An example of normalized confidence functions computed on images acquired with a

consumer camera are shown in figure 5.1.
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Figure 5.1: The plots of the μ function in respect to the [0, 255] gray levels for EV = −1,

EV = 0, EV = 1.

Taking into account the confidence value computed in the previous subsection, a more

informative approach is to consider the weighted average (or the convex combination of

the pixel values). The weights encode the confidence that a value is outputted correctly.

By this approach, the resulting image is computed as:

fHDR(l,m) =

N∑
i=1

μ (EV (i), fi(l,m)) · 2EV (i) · fi(l,m)

N∑
i=1

μ (EV (i), fi(l,m))

. (5.4)
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5.3.3 Non–linear Image Fusion

An alternative to the real operations used in equation (5.4) is to use operations extracted

from non-linear image processing models, [9], [10]. The multiplication of an image level

with the associate weight and respectively the normalization follows a particular model

(Jourlin–Pinoli, Vertan, piecewise linear) of the equation (2.4), while the addition from

the sum follows equation (2.3)

The advantage of using NIP models is the dynamic range reported by the resulting

images. If one will examine equation (5.2) with N0 = 2 and the inputs being all possible

combinations of pairs defined between 0 andD, then there will be 2D−1 possible resulting

levels. If the operation is performed using equation (2.8) - Jourlin–Pinoli model for

instance, then the number of outputted different levels is in the order of D2

4
, while equation

(2.11) leads to a order of D2

2
. The non-linear addition produces an over-sampling of the

output values space. The corresponding dynamic range value for D = 256 is, roughly:

DR = 10 log
(

D2

2

)
≈ 45dB, compared with 24dB for a single image or 28 dB for real–

based operations.

Thus, implementing the image fusion in a logarithmic space (or, shortly, by apply-

ing log-bracketing) the resulting image will exhibit largely increased number of different

brightness levels (which can give the user the possibility of detecting objects in uniform

areas from the original images).

5.4 Results

One application of the current method is for natural images. Another application which,

from a certain point of view is more important, is dynamic range extension for digitizing

analog radiographs.

For evaluation of the results two methods are at hand (and the corresponding results

are to be seen in table 5.4). One method is the subjective evaluation, where a set of

observers, expert and non-expert graded the resulting images from worst quality (0) to

the best quality (5).

The other method regards an objective score and that is implemented as entropy effec-

tiveness. Given the specific requirements of the tested application (HDR enhancement),

we claim that pixel values entropy can be used as an objective measure because a HDR

image must allocate comparable portions of the visible range to all objects; in such a case,
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Method
Gray–level

ρs MOS

Color

ρs MOS

IEV −1 0.203 - 0.125 -

IEV 0 0.150 - 0.112 -

IEV +1 0.136 - 0.156 -

Simple 0.293 3.75 0.110 4.25

Jourlin–Pinoli 0.121 4.75 0.087 4.75

Vertan 0.125 4.75 0.100 4.37

Piecewise Linear 0.144 4.50 0.112 4.25

Table 5.1: Evaluation measures of HDR images for gray-level and color images set by

entropy effectiveness, ρs, and Mean Opinion Score, MOS, (the average grade of the human

observers).

the information (which is measured by entropy) should be maximum. Indeed, as we ex-

pect, the HDR image exhibits the maximal range of values, their distribution resembling

a uniform one. We measure the entropy effectiveness as:

ρs = 1 − H(F )

Hmax(f)
(5.5)

H(f) = −
D∑

u=1

pi log pu

[
bit

symbol

]
, (5.6)

where pi is the luminance histogram value corresponding to gray level i and M is the

maximum number of different pixel values. The maximum value of the entropy is the

number of bits per pixel.

The first observation is that the entropy, which is a measure of the uniformity of

the image histogram, is consistent with subjective evaluation. The next observation is

that the Jourlin–Pinoli model is the most appropriate for the current experiment followed

closely by the Vertan model. The piecewise linear model (used here with 5 segments) is

a reasonable compromise.
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5.5 Dynamic Range Enhancement for Analog Radio-

graphic Images

A result with high practical utility of the HDR algorithms is found in the digitization

of analogue radiographs. The importance of such contribution is enhanced by the fact

that medical imaging results act directly on the humans. By medical imaging means, the

clinician sees inside the patient. If the investigated part is the human skeleton, then the

typical mean is by X-ray machine and radiographs. Modern analysis techniques, due to

the use of computer assisted diagnosis requires data in digital format. Unfortunately the

digital X-ray machine became available only in recent times and even now, the orthopedic

and radiologic centers from remote areas are using analogue (film) devices. So the analogue

to digital conversion problem still holds.

To enhance the need of digitization we shall add the problem of specialists. Not in all

the medical centers with analogue X-ray devices there are highly qualified doctors and,

now, for complicated diagnosis the film radiograph has to be physically transported to

the advanced center. A digital image can be sent over data connections and the diagnosis

process and treatment will be highly speed up, [46].

The problem of digitizing analog radiographs may be addressed in two ways: with

performing scanners or with digital cameras. The first solution may be more easy but is

also more expensive. The digital camera solution is cheaper, especially if consumer ones

are used, but it has the drawback of decreasing the dynamic range from the 12 bits of the

analogue film to the 8 of the digital image. Hence a dynamic range enhancement method,

that will ensure that all the input information is preserved, is needed.

An initial solution of extending the dynamic range of camera acquired images of ana-

log radiographs makes use of the total ordering method, described in [47]. It has the

advantage of requiring only one input image. However, as discussed in [48], better results

are retrieved if more input images, each accurately recording different parts of the high

gamut, are used. Our proposal, validated against medical personnel opinion, is the so

called log-bracketing method, which implies several images, weighted in respect to each

pixel accuracy, [49], followed by image fusion based on non-linear operations, [9], [10]. The

next, future, step of this algorithm is to build a certified standard of digitizing analogue

radiographies.

Once that informative digital images are at hand, analysis techniques may follow. For
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instance, we focused on the analysis of the prosthesis fit inside the the femoral channel

in the case of the total hip arthroplasty. Following digitization, segmentation techniques

separate the prostheses from the femoral bone and a score of the fit is computed, [48],

[50]. The schematic of the full system may be followed in [51]. In [52], a 3D model of

the local bone system is build for visualization and further analysis purposes, while in

[53], the bone texture analysis is explored; here accurate digital information is required

for accurate analysis results.
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Chapter 6

Conclusions and Future Work

This work focussed on studying a set of non-linear processing applications for enhancing

images acquired with digital still cameras. If the origin of the work lies in the logarithmic

image processing models, the shared feature of the proposed applications is that the input

data was recorded with a digital still camera.

Regarding the logarithmic image processing models, we try to sought the answer to the

question: ”Are there any other models of those known?”. In order to solve this dilemma,

in Chapter 2, it was needed to make a call to mathematical instruments from the algebraic

theory of homomorphisms and vector (cone) spaces, instruments otherwise fairly simple,

so with great potential for practical impact. Thus, we found a set of sufficient conditions

that if fulfilled by a function that is to be applied to the real space structure, will lead to

determination of a new non-linear model for image representation and processing. The

new model will have a structure of vector/cone space. Between the described applications,

parametrical models and piece-wise linear ones have been presented.

But the hereby paper aims to be a work in a field of engineering sciences, so the theo-

retical discussion about the logarithmic models expansion in the area of models generated

by non-logarithmic functions is doubled by two applications. Both applications, although

at first sight on a different objective, are dedicated to images acquired with digital still

cameras.

In fact, the way light is processed in cameras, which is deeply non-linear, was the

unifying grip of the applications. The first of the two applications is related to amplifying

images with a time of exposure under normal value. The algorithm developed for solving

the mentioned problem, described in Chapter 4, can be used as a solution to the extremely

pressing problem of degradation by blur of photographic images due to human hand
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jitter. This application is developed by a research group that includes the author, for the

company Tessera and has attracted great public interest in the most important exhibitions

dedicated photographic techniques (PMA 2008). This product will be publicly launched,

probably, during 2009.

The second application, with the largest share in the work, relates to expanding the

dynamic range images acquired by digital cameras. The proposed solution, the so called

”log-bracketing” algorithm, firstly weights the acquired frames, so later to non-linear fuse

them and, therefore, to greatly enhance the resulting image dynamic range. This appli-

cation has in view both the images of natural colors and gray–level more particularly in

the process of digitizing analog X-rays. In fact a group of researchers from the University

”Politechnica” of Bucharest and University of Medicine and Pharmacy ”Carol Davila”

has aimed to standardize a low cost method for transferring digital information stored

on analog X-ray film. Such a standard opens the way for digital processing and analysis

algorithms to images from analog databases accumulated in the span of decades of clini-

cal investigation of human skeleton. Going further, such a standard, in conjunction with

digital image transmission via existing data networks open access of the remote centers

to highly qualified and experience clinicians from large medical centers.

6.1 Future Work

Boundaries that were broken in the generating of non–linear image processing and rep-

resentation model require further investigation. The multitude of applications already

developed on the basis of (pseudo)logarithmic models can benefit from greater flexibility

of parametrization. The speed of calculation can be increased without loss of quality with

the piece-wise linear model. The replacement of addition or of scalar multiplication in an

existing application with excerpts from a new model, or possibly one that will be derived

at the right time, can lead to results of a high quality if the model has specific properties

that are closer to the requirements. In terms of theoretical analysis of the nonlinear mod-

els for images representation and processing, although with substantial contribution, this

work has not exhausted the subject because only sufficient conditions were determined,

while the necessary ones not yet.

Regarding the solution proposed to reduce the blur in digital photography, they include

a future release to the public. Only time to come will show if this solution will have the

same impact for ordinary user that had on the community in the field.
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The method proposed for extending the dynamic range of digital photos is a step in

a more complex system. As can be seen in the attached bibliography, the research of the

hereby author in this area is closely related to X-ray zone of hip. For these cases the model

proposed by logarithmic Jourlin – Pinoli provided the most elaborate solution, and the

Vertan model was the ideal compromise between complexity and efficiency of calculation.

Based on these images were constructed systems of analysis which are demonstrating their

value in a medical point of view. On the other hand, if in future, focus will be other parts

of human skeleton out of the balance area, further analysis of the acquisition system is

needed to find out what model is most suited in the enhancement of dynamic range.
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