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Abstract

This paper investigates the recognition of
the Eye Accessing Cues (EACs) used in the
Neuro-Linguistic Programming (NLP) as a
method for inferring one’s thinking mecha-
nisms, since the meaning of non-visual gaze
directions may be directly related to the in-
ternal mental processes. The direction of
gaze is identified by separating the compo-
nents of the eye (i.e. iris, sclera and surround-
ing skin) followed by retrieving the relative
position of the iris within the eye bounding
box, that was previously extracted from an
eye landmarks localizer. The eye cues are re-
trieved via a logistic classifier from features
that describe the typical regions within the
eye bounding box. The simultaneous investi-
gation of both eyes, as well as the eye tracking
over consecutive frames are shown to increase
the overall performance. The here proposed
solution is tested on four databases proving
to have superior performance when compared
in terms of recognition rate with methods re-
lying on state of the art algorithms.

1. Introduction

Along with entering into the digital era and fostered
by the growth of computer usage in daily life, there
are considerable efforts of creating systems to facili-
tate a better automatic understanding of human think-
ing and emotional mechanisms as part of establishing
ways for non-verbal communication (Pentland, 2008).
In the computer vision part of the mentioned area,
most of the research is related to the understanding of
the functioning of the human mind. More precisely, it
is aimed at interpreting facial expressions (Fasel and
Luettin, 1999), (Zeng et al., 2009) or establishing their
underlying emotions which were shown to be univer-
sally correlated (Ekman, 1982). Recently, the litera-
ture reported attempts to interpret more complex sit-
uations, such as dyadic social interactions for the diag-
nosis and treatment of developmental and behavioral
disorders (Rehg et al., 2013) and to experiment within
new areas of psychology, as pointed in the recent re-
view by Cohn and De La Torre (Cohn and De la Torre,
2014). Among newer directions investigated, we note
the detection of deception as part of hostile intention
perception (Tsiamyrtzis et al., 2007), the estimation
of pain intensity via facial expression analysis (Ashraf
et al., 2009), (Florea et al., 2014), the interpersonal co-
ordination of mother–infant (Messinger et al., 2009),
the assistance in marketing (McDuff et al., 2013), etc.
Another direction of investigation is offered by the
Neuro-Linguistic Programming (NLP) theory, which



Gaze Estimation for EAC Recognition

presents unexplored opportunities for understanding
the human patterns of thinking and behavior.

NLP was introduced in the 70s by Brandler and
Grinder (Bandler and Grinder, 1979), as a different
model for detecting, understanding and using the pat-
terns that appear between brain, language and body.
One such model is the Eye-Accessing Cue (EAC) that
uses the positions of the iris inside the eye as an in-
dicator of the internal thinking mechanisms of a per-
son. The direction of gaze (Fig. 1), under the NLP
paradigm, can be used to determine the internal repre-
sentational system employed by a person, who, when
given a query, may think in visual, auditory or kines-
thetic terms, and the mental activity of that person,
of remembering, imagining, or having an internal dia-
logue.

The Eye Accessing Cues from the NLP theory are not
unanimously accepted, with some of the most recent
research on the topic calling for further testing (Sturt
et al., 2012). Thus, we performed our own experiment
to gain better insight of the facts: we gave various per-
sons queries and we checked if the reaction followed
the NLP rules. The recorded results were reported in
(Vranceanu, Florea and Florea, 2013), and while we
did not find 100% accuracy (i.e. universality), the cor-
rect apparition rates were higher than random chance.

The problem of identifying one’s direction of gaze is in-
tensively studied in computer vision. One may classify
these systems by:

1. Recording position of the device. Here, we may
distinguish:

(a) Head mounted devices (e.g. glasses or head
moun- ted camera);

(b) Stationary and/or remote devices.

While being closer to the eye, the head mounted
devices have access to higher resolution and, thus,
better precision. Yet, they do come with two in-
herent shortcomings. First, their price (spanning
from several thousand dollars, for a professional
commercial solution, down to a hundred dollars
for the more affordable ones compared to few dol-
lars for a normal webcam) restricts the area of
usability. The second aspect is related to the fact
that they are wearable, which is a distinct indi-
cator that the user is subject to exploration and
investigation by non-traditional means. Conse-
quently, we will rely on a stationary webcam.

2. Illumination source domain. Here we note:

(a) Active, infra-red (IR) based illumination;

(b) Visible spectrum illumination.

While the high performance of the commercial
eye-trackers relies on the information from the IR
domain, its use implies a distinct device. This is
due to the fact that the IR source is not typically
incorporated in webcams, and it creates similar
problematic as the head-mounted category.

Furthermore, the use of distinct means (such as wear-
able eye tracking and/or respectively active illumina-
tion sources) limits the applicability of methods to
data which was recorded accordingly; post–processing
for investigation analysis of other data is futile. We
constructed our system having in mind a normal digi-
tal video camera and two main applications.

The first use-case relates to online interviews. Small
and medium companies look for additional employees
at a distance and, due to budgetary constraints, the
interview is online, with the applicant being subject
to recording (sometimes by his/her own means). In
such cases, given a query, discrimination between the
remembering type of activities (looking left) and the
constructing one (looking right) would differentiate ex-
perience from creativity. For the technique to be effec-
tive in such a case, it is mandatory for the interviewed
person to be unaware of the fact that his/hers non-
verbal messages are also recorded and analyzed. We
construct our method assuming recoding devices typ-
ical for webcam transmission; thus, no distinct mean,
such as a head mounted camera or an active illumina-
tion source, can be involved.

The second use-case is about interactive communica-
tion for marketing and training. In such a case, if the
communication is online, the restrictions are similar
with the previous case (the subject must have access
to a recording device). For the face–to–face interac-
tion, the meeting is recorded and analysis may be per-
formed either real-time with conclusions being shown
to the presenter, or before the next session, such that
the trainer/seller will ensure that maximum of infor-
mation reaches his interlocutors.

1.1. Related work

In computer vision, extensive research was done in the
field of detecting the direction of gaze (Duchowski,
2007), (Hansen and Qiang, 2010), by means of so-
called eye trackers. Usually, Eye tracking technology,
relies on measuring reflections of the infrared / near-
infrared light on the eye: the first Purkinje image (P1)
is the reflection from the outer surface of the cornea,
while the fourth (P4) is the reflection from the inner
surface of the lens; these two images form a vector
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Figure 1. The 7 classes of EACs (Bandler and Grinder, 1979): When eyes are not used for visual tasks, their position
can indicate how people are thinking (using visual, auditory or kinesthetic terms) and the mental activity they are doing
(remembering, imagining, or having an internal dialogue).

that is used to compute the angular orientation of the
eye, in the so–called ”dual Purkinje” method (Hansen
and Qiang, 2010). An example of such an eye track-
ing systems is, for instance, found in the work of Yoo
and Chung (Yoo and Chung, 2005) who relies on two
cameras and four infrared sources to achieve high ac-
curacy.

A method relying on a head mounted device with visi-
ble spectrum illumination is found in the work of Pires
et al. (Pires et al., 2013) who extracted the iris contour
followed by Hough transform to detect the iris center
and, respectively, by the localization of the eye cor-
ners contours; the head-mounted device, permits high
resolution for the eye image thus extending the range
of a wearable eye-tracking for sport. Due to reasons
detailed in the previous subsection, we will avoid both
the IR-based and, respectively, the head mounted cat-
egory of solutions.

The alternative is to develop non-intrusive, low-cost
techniques that directly measure the gaze direction,
such as the approaches used in (Wang et al., 2005),
(Hansen and Pece, 2005), (Cadavid et al., 2009), (Hey-
man et al., 2011), (Wolf et al., 2010). Wang et al.
(Wang et al., 2005) select recursive nonparametric dis-
criminant features from a topographic image feature
pool to train an Adaboost that locates the eye direc-
tion. Hansen and Pece (Hansen and Pece, 2005) model
the eye contour as an ellipse and use Expectation-
Maximization to locally fit the actual contour. Ca-
david et al. (Cadavid et al., 2009) train a Support
Vector Machine with spectrally projected eye region
images to identify the direction of gaze. Heyman et
al. (Heyman et al., 2011) use correlation-based meth-
ods (more precisely the so-called Canonical Correla-
tion Analysis) to match the new eye data with marked
data and to find the direction of gaze. Wolf et al. (Wolf
et al., 2010) used the eye landmark localizer provided
by Everingham and Zisserman (Everingham and Zis-
serman, 2006) to initialize the fit of the eye double
parabola model. We note that all these methods first

localize eye landmarks and subsequently analyze the
identified eye regions.

As we choose to locate landmarks in the eye region, our
method is part of the category of face fiducial points
locators. This is a rich class of methods, including
some of the most recent and accurate solutions, as the
ones proposed by Valstar et al. (Valstar et al., 2010)
or Zhu and Ramanan (Zhu and Ramanan, 2012). The
BoRMaN algorithm described in (Valstar et al., 2010)
iteratively improves an initial facial landmark estimate
by features processed with Markov Random Fields and
Support Vector Regression. Zhu and Ramanan (Zhu
and Ramanan, 2012) rely on a connected set of local
templates described with Histogram of Oriented Gra-
dient.

For the recognition of the direction of gaze in terms
of NLP–EAC, we note the works from (Diamantopou-
los, 2010), (Florea et al., 2013) and (Vranceanu, Flo-
rea, Florea and Vertan, 2013). In the work of Dia-
mantopoulos (Diamantopoulos, 2010) a head mounted
device is used. Taking into account that Laeng and
Teodorescu (Laeng and Teodorescu, 2002) showed
that, even for non-visual tasks, voluntary control af-
fects eye movement, we may conclude that they ex-
plore the theme only from a computer vision perspec-
tive, without direct practical applications. Further-
more, the head mounted device has the un-realistic ad-
vantage of being closer to the eye and, thus, of having
access to higher resolution and more precisely located
eye image patches. For images with high resolution,
the method implied by Pires et al. (Pires et al., 2013)
(iris contour detection followed by Hough transform
for circles) works very well. However, for the lower
resolution images, which are associated with remote
acquisition devices, the contours in the eye region are
no longer sharp and the accumulation in the Hough
transform, very often, points to wrong locations. In
(Florea et al., 2013), the focus is placed on correctly
identifying the eye landmarks while the direction of
gaze is only seen as a possible application limited by
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the chosen approach.

The here proposed work is a direct extension of the
method presented in (Vranceanu, Florea, Florea and
Vertan, 2013). By comparison, here, we increase the
accuracy of the method, we improve the results by
fusing information from the analysis of both eyes and
considering consecutive frames (in a tracking frame-
work) and we extend the testing by considering three
supplemental public databases.

1.2. Paper structure

The solution introduced in the current work assumes a
scenario where the image acquisition is done with a sin-
gle camera with fixed, near-frontal position, under free
natural lighting. The algorithm relies solely on gray-
scale images and a coarse–to–fine approach is used for
localization, succeeded by gaze direction recognition.
First, we precisely determine the eye bounding box,
followed by a pre-processing that enhances the sepa-
ration of the iris from the eyelashes. Once the eye
region is segmented, and the eye components are re-
trieved, the relative position of the iris is extracted by
template matching mechanisms and processed for the
EAC recognition.

Our contribution is two-fold. On the technical side,
while we rely on individual, known techniques, as
building blocks, we refine them and combine them in a
novel autonomous system that localizes the eye bound-
ing box precisely, and recognizes 7 directions of gaze in
real-time. On the application side, we propose the first
easy–to–use system that specifically focuses on recog-
nizing eye accessing cues in terms of NLP, that may
be further incorporated in on-line communication for
interviewing or training.

Thus, in section 2 we describe the detection of the
eye bounding box; inside this bounding box various
methods are employed for detecting the relative iris
position and the corresponding EAC, as detailed in 2.2.
Section 3 is some implementation details. Finally, the
method is tested on the Eye-Chimera (both still and
sequence parts), HPEG, UUlm and PUT databases
and the achieved results are presented in section 4;
the paper ends with discussions and conclusions.

2. Method

A visual overview of the proposed method is presented
in Fig. 2. As the method is fully automatic, first the
face crop is obtained using the classical Viola-Jones al-
gorithm (Viola and Jones, 2004), trained with frontal
faces (≈ ±30o yaw angle with respect to frontal po-
sitions). The yaw angle limitation originates in the

Figure 2. Workflow for the proposed EAC recognition
method.

constrain that both eyes should be completely visible.
All the processing is then performed inside the face
square, rescaled at a 100 × 100 pixels size. Our ap-
proach uses image projections functions to precisely
determine the limits of the eye bounding box and then
applies a segmentation that separates the eye compo-
nents. Finally, by combining projection and segmen-
tation description, a classification process is employed
to recognize the EAC.

2.1. Detecting the Eye Bounding Box

While it is possible to estimate a rough bounding box
of the eye directly based on the face square (as in the
case presented in (Valenti and Gevers, 2008)), we aim
at an improved precision. For this task we depend on
the integral and edge image projections functions.

We recall that the integral image projections functions
(IPF), in an image rectangle given by [x1, x2]× [y1, y2],
are computed as:

PV (i) =

x2∑
j=x1

I(i, j),∀i = y1, . . . , y2. (1)

PH(j) =

y2∑
i=y1

I(i, j),∀j = x1, . . . , x2.

where the I(i, j) term stands for the luminance im-
age at location (i, j). Similarly, the edge projections
functions (EPF) are computed using a Sobel operator
to obtain the magnitude edge image S from the lumi-
nance image I and then to apply Eq. (1), where I is
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replaced by S:

EV (i) =

x2∑
j=x1

S(i, j),∀i = y1, . . . , y2. (2)

EH(j) =

y2∑
i=y1

S(i, j),∀j = x1, . . . , x2.

The literature comprises many approaches related to
eye localization, many of them being based on image
integral projections functions (Feng and Yuen, 1998),
(Zhou, 2003). Later, it was shown (Turkan et al.,
2008), (Florea et al., 2012) that a combination of nor-
malized integral image projections and machine learn-
ing systems has a high discriminative power in local-
izing the eye center. Here, we will take these works as
a starting point and we will improve performance un-
der the constraint to cover the specificity of the EAC
testing (that is, under gaze variation).

The eye bounding box is first roughly initialized in the
middle-upper face quarter band (that is the lines from
y1 = 25 to y2 = 50) and symmetrical in the vertical im-
age quarter bands (within x1 = 20 and x2 = 45 for the
left eye and from x1 = 55 to x2 = 80 for the right eye),
as shown in Fig. 3(a). Such a procedure is employed
by Valenti and Gevers (Valenti and Gevers, 2008), in
their iris center localization method: they have exam-
ined a set of four databases and located the relative
position of the ground truth iris center with respect to
Viola-Jones reported face rectangle; the result is the
bounding box further used for search. Starting from
those values, we enlarge the bounding box to include
completely the eye lashes and to add more robustness
for cases where the face detector reported rectangle is
less precise.

Using the horizontal integral and edge projections
of such crops (Fig. 3(c)/(d)) a logistic classifier
(le Cessie and van Houwelingen, 1992) (10−7 ridge in
log-likelihood, iterate until convergence) is first trained
to find the upper and the lower limits of the eye bound-
ing box. Next, re–cropping the eye area on the found
limits and using the vertical integral and edge pro-
jections as input feature vector (Fig. 3(e)/(f)), the
classifier is similarly trained to detect the left and the
right limits.

The results obtained with this method are highly con-
sistent with the ground truth, as can be seen in Fig.
4. As detailed in section 4, a precision of 95.51% is
obtained for ε ≤ 0.05, while in 99.27% of the cases the
error is ε ≤ 0.1.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Eye limits in image projections functions: (a)
Face crop with initial coarse eye selection; (b) Coarse eye
selection with final bounding box; (c) Vertical IPF (red line
marking eye upper/lower limits); (d) Vertical EPF (red line
marking eye upper/lower limits); (e) Horizontal IPF (red
line marking eye lateral limits); (f) Horizontal EPF (red
line marking eye lateral limits).

2.2. EAC Recognition

Once the eye bounding box has been delimited, the
specific EAC is retrievable by analyzing the positions
of different eye components. The natural choice is to
analyze the position of the iris inside the eye bound-
ing box. The iris may be found either by the use of an
eye center localizer (such as the one from (Valenti and
Gevers, 2008)), or by separating the eye regions. As
eye localizers are imperfect especially when challenged
by gaze variation, for improving the accuracy, we fo-
cus on segmenting the components of the eye within
the bounding box and use their relative position as
indicators of the EAC.

Pre-processing The segmentation is performed in-
side the bounding box and the aim is to separate the
iris, the sclera and the surrounding skin area in 3 dis-
tinct classes. Yet, as the iris and the eyelashes tend
to be spatially connected and to have similar lumi-
nance values, before the actual segmentation, a pre-
processing is required to separate the iris from the
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Figure 4. Eye refined bounding box: (a) Ground truth (manual markings); (b) Detected using integral and edge projections

eyelash.

Starting from the observation that the iris is a large,
dark region of the eye (Wu and Zhou, 2003), we
look for the darkest, smooth neighborhood within the
bounding box. This is found by selecting the areas that
are darker than the median luminance value within the
bounding box, in both the original image and a Gaus-
sian low-pass smoothed image. The luminance of each
pixel in the remaining of the eye bounding box is then
multiplied by a factor of 2, such that the segmentation
will generally detect the iris as a stand alone region
(Fig. 5(d)).

Segmentation Segmentation is a well known prob-
lem and many solutions have been proposed through
the years. As we did not aim at good segmentation
per se, we require a combination of good EAC recog-
nition in a reasonable amount of time. According to
the tests performed (visually shown in Fig. 5 and nu-
merically quantified in section 4), the best compromise
is achievable using a K-Means segmentation. It is pos-
sible to refine these results using Graph Cuts (Boykov
and Kolmogorov, 2004) (which imposes a smoothness
constraint to reduce the number of disconnected re-
gions and provide more compact classes (Fig. 5(c)),
yet the time overhead (75 msec in average for a por-
trait, compared to 10 msec for K-Means) is consider-
able when compared with the marginal accuracy im-
provement. Other tested segmentation methods are
Mean Shift (Comaniciu and Meer, 2002) and Water-
shed (Meyer, 1994) (Fig. 5(e), (f)). These methods
typically lead to over-segmentation. Yet, even though
a new dynamic region merging technique is employed
in order to consider light regions more similar and sep-
arate the darker areas (the iris and the eyelashes), the
results under-perform the K-Means me- thod.

Post-processing and Classification The space
given by the detected, refined, bounding box is normal-
ized to a standard width (of 25 pixels), while preserv-
ing the aspect ratio. Also, since the height is variable,
all eyes are aligned at the lower limit of the refined
bounding box (i.e. always the bottom limit of the eye
has the y coordinate equal with 0) to ensure a better
separation between eyes looking down, which are con-

tained in narrow boxes, respectively, looking up (and
opened wider), within larger boxes.

The coordinates of each of the resulting eye compo-
nents’ centers of mass in the normalized bounding box
and the average luminance are used as features describ-
ing the eye. To improve the region separation resulted
from segmentation, we build upon the same integral
projections functions (IPF), as we recalled their effi-
ciency in describing the eye structure. Therefore, for a
more general description inside the bounding box, the
vertical and horizontal integral and edge projections
are, once again, added as features for the classifier,
next to the segmented regions center of mass.

In order to recognize the 7 EAC classes, the feature
vector is composed by:

• 3×C elements (which correspond to the centers of
mass coordinates and the average luminance for
each of the C regions) and

• the concatenated horizontal and vertical integral
and edge projections.

Various classification methods are considered and, as
the number of features is small, the same Logistic Clas-
sification (le Cessie and van Houwelingen, 1992) gave
good results.

3. Implementation

3.1. Databases

To study the specifics of the EAC detection prob-
lem, we have developed the Eye Chimera Database
(Vranceanu, Florea, Florea and Vertan, 2013) contain-
ing all the 7 cues. In generating the database, 40 sub-
jects were asked to move their eyes according to a pre-
defined pattern and their movements were recorded.
The movements between consecutive EACs were iden-
tified, the first and last frame of each move were se-
lected and labelled with the corresponding EAC tag
and eye points were manually marked. In total, the
database comprises 1170 frontal face images, grouped
according to the 7 directions of gaze, with a set of 5
points marked for each eye: the iris center and 4 points
delimiting the bounding box.
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Figure 5. Eye Features: a) Iris center using (Valenti and Gevers, 2008); Segmentation in 3 classes using: b) K-Means;
c) K-Means refined with Graph-Cuts; d) K-Means refined with pre-processing step; e) Mean Shift + region merging; f)
Watershed + region merging.

Additionally, for a more extensive testing, we extended
the basic Eye Chimera database with all the consecu-
tive frames that are part of each basic eye movement.
This part was named Eye Chimera Sequences.

Furthermore, in order to support the extensive re-
search on eye gaze, there were introduced in litera-
ture a number of state of the art databases that con-
tain these particular eye movements. While in some,
the gaze movement appears only to be highly corre-
lated with head pose as in the case of the Boston
database (Cascia et al., 2000), we selected databases
with gaze variability uncorrelated with the head pose.
Three such databases are selected: the Head Pose
and Eye Gaze (HPEG) by Asteriadis et al. (Aster-
iadis et al., 2009), the PUT Face by Kasinski et al.
(Kasinśki et al., 2008) and the UUlm Head and Gaze
by Weidenbacher et al. (Weidenbacher et al., 2007)
databases, which contains only sideways gazes with
different head rotations. Still, it should be noted that
the HPEG, PUT and UUlm databases, when com-
pared to Chimera, introduce the variability of the head
pose within the frontal detected posture.

3.2. Training and testing

The proposed method (for all experiments) is trained
on randomly selected cases from the still Eye Chimera
database. Half of the database is used for training, as
well as for various parameter tuning.

While testing on the still Eye Chimera database, the
training and testing parts are rotated such that the
two-fold procedure is implied. In tests on HPEG,
UUlm and PUT, the system values are the ones found

while training on the Eye Chimera database.

While computing the EAC recognition rate, two sce-
narios are evaluated: the 7-case and the 3-case. The
complete 7 EACs set contains all the situations de-
scribed by the NLP theory and presented in Fig. 1.
Additionally, as the vertical direction of gaze is harder
to identify (Hansen and Qiang, 2010), we consider only
3 cases assigned to: looking forward (center), looking
left and looking right; in terms of EACs, here, the focus
is on the type of mental activity, while the represen-
tational systems are merged together. This particular
test is relevant for the interview scenario, where, when
given a query, if the subject remembers the solution,
it indicates experience in the field, while if he/she con-
structs the answers, it points to creativity.

4. Results

In this section, we will use the still part of the Eye
Chimera database to assess the influence of various
parameters, as it contains the specifics of the EACs,
which is the main concern for the current work. Fur-
thermore, for the incipient tests, we will apply the
method independently on each eye (therefore a face
providing 2 cases). Later, we will show that simulta-
neously using information from both eyes increases the
accuracy.

4.1. Bounding Box Detection

In order to evaluate the accuracy of the bounding box
localization, we use the error for each point of inter-
est normalized with the inter-ocular distance, as sug-
gested in (Cristinacce and Cootes, 2006). This prox-



Gaze Estimation for EAC Recognition

Table 1. Average localization rate [%] of the 4 bounding
box limits on the still part from the Eye-Chimera database.
We report the results when only the Integral Projections
Functions (IPF) are used and when they are combined
with Variance Projections Functions (VPF) and respec-
tively with Edge Projections Functions (EPF). We also re-
port the results achieved by our initial solution (Vranceanu,
Florea, Florea and Vertan, 2013) and respectively by one
of the foremost state of the art methods (Valstar et al.,
2010).

Method ε < 0.05 ε < 0.1
IPF 91.99 98.36

IPF+VPF 92.05 98.54
IPF+EPF 94.51 99.27

BoRMaN 54.85 81.40
Vranceanu et al. 89.75 98.50

imity measure me is computed as:

me =
1

t ·Deye

t∑
i=1

εi (3)

where the εi is the absolute distance between the
ground truth for the coordinate i and the automatic
finding of the same coordinate.

In evaluating the bounding box limits, only the x di-
mension is considered for the left and the right lim-
its, and only the y dimension for the upper and lower
limits. To provide accurate enough results, the nor-
malized localization error should be below 0.05. A
comparative evaluation of the proposed method to the
coordinates given by the solution from (Valstar et al.,
2010) and respectively from (Everingham and Zisser-
man, 2006), can be seen in Fig. 6 for various errors.
While being more simple, the proposed solution gen-
erally gives more accurate results and provides an ac-
ceptable error for over 90% of the database.

The influence of the type of image projections func-
tions used for computing the feature that describes
the eye is investigated and the results are presented in
Table 1 as the average error for the 4 eye limits. Best
results are obtained when the integral and edge pro-
jections are combined, slightly outperforming (+3%)
the version when only integral projections are used.
Since a higher precision is critical for further analysis,
this is the version used through the rest of the tests.
However, adding the variance projections (Feng and
Yuen, 1998) as well, does not bring much extra infor-
mation and these types of projections are, therefore,
discarded.

(a) (b)

(c) (d)

Figure 6. Eye limits detection accuracy computed on the
still part of the Eye-Chimera database for different normal-
ized errors (0:0.25), using BoRMaN solution (Valstar et al.,
2010) (dashed red line), the method proposed by Ever-
ingham and Zisserman (Everingham and Zisserman, 2006)
(continuous blue line) and the proposed solution based on
image projection functions information: IPF (dashed black
line) and IPF + EPF (solid green line), for the 4 bounding
box limits: a) left; b) right; c) up; d) down. Everingham
and Zisserman (Everingham and Zisserman, 2006) reported
only the lateral eye limits.

4.2. Segmentation

Eye region segmentation is an important step for the
accurate recognition of the EAC and a critical as-
pect is the number of classes, C, in which the input
data should be divided. As can be seen in Table 2 a
larger number of regions increases the EAC recogni-
tion rate; therefore, the eye space should be in fact
divided in 4 regions corresponding to all the eye com-
ponents present in the bounding box: the iris and the
sclera, the eyelashes and the surrounding skin area.

The results obtained with various segmentation algo-
rithms are presented in Table 3; we note that only
the results for the best combination of parameters are
presented. Although the Mean-Shift and Watershed
segmentation has the highest accuracy when used as
stand-alone methods, the K-Means segmentation gives
better results, when the iris oriented pre-processing
step is used (as described in section 2.2.a).
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Table 2. Influence of the number of regions on the EAC
recognition rate, RR[%], when simple K-Means segmenta-
tion is used (without additional projection information).

Regions No. C = 2 C = 3 C = 4
RR [%] (7 EAC classes) 50.73 62.08 64.56
RR [%] (3 EAC classes) 62.77 77.28 82.32

Table 3. Execution time vs. EAC recognition rate for dif-
ferent segmentation methods using C = 4 classes of the
eye region: K-Means (KM), K-Means refined with Graph
Cuts (KM+GC), Mean Shift (MS) and Watershed (WS)
post-processed with Region Merging (RM), Iris-oriented
Preprocessed K-Means (IP+KM), which is then combined
with projection information (Proposed).

Segmentation
Method

Execution
Time [msec]

RR
[%]

KM 10 64.56
KM+GC 75 67.12
MS+RM 18 69.34
WS+RM 28 69.51
IP+KM 13 72.59
Proposed 14 77.54

4.3. EAC Recognition

The final proposed solution that gives the best results
for EAC recognition consists of using iris-oriented K-
Means segmentation together with projection informa-
tion. As it can be seen in Table 3, the extra use of the
integral projections in the feature vector leads to an
improvement of approx. +5% in the recognition rate.

Furthermore, the recognition rates for each individual
EAC are presented in Table 4 and the confusion ma-
trix is shown in Fig. 7. It can be seen that a higher
confusion rate appears vertically, between eyes looking
to the same side. In a NLP interpretation, this cor-
responds to a better separability between the internal
activities and a poorer separability between represen-
tational systems. Visual examples of correct and false
recognitions are shown in Fig. 8 and it should be noted
that even for a human observer it is difficult, in some
cases, to correctly classify the direction of gaze.

Comparison with related work. Given the state of
the art, one intuitive way to recognize the EAC is
to use the coordinates of eye fiducial points. Thus,
we consider as relevant several foremost such meth-
ods. First, the BoRMaN algorithm (Valstar et al.,
2010) can be employed for detecting the eye bounding
box and a good iris center localization can be obtained
using the maximum isophote algorithm presented in

Table 4. Individual Recognition Rate for each EAC case
on the still Eye Chimera database. The acronyms for the
EACs are presented in Fig. 1.

VD VR VC AR AC ID K

88.62 74.66 80.00 71.83 61.43 71.76 80.43

Figure 7. EAC Confusion Matrix as computed on the still
Eye Chimera database.

(Valenti and Gevers, 2008). The eye landmarking
method proposed in (Florea et al., 2013) also provides
the required points for such an analysis. Finally, us-
ing the landmarking technique proposed in (Zhu and
Ramanan, 2012), out of a larger number of detected
fiducial points, the points delimiting the eye and the
iris center can be selected for the EAC analysis.

Comparative results are presented in Table 5. As one
can see, the proposed solution outperforms the state of
the art. For the proposed method, the refined bound-
ing box (or more precisely its height) is necessary to
differentiate between looking down and looking else-
where, while the iris position inside it, actually defines
the direction of gaze. The pre-processing step removes

Figure 8. Automatic Recognition examples: correct (green
arrow) and false (red arrow).
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the eye-lashes as it interferes with the iris separation
from the rest of the eye components. The integral pro-
jections functions added in the post-processing step
supplement the information used by the classifier for
the EACs recognition. Due to these facts, when all
7 EAC classes are considered, the proposed algorithm
surpasses the upper limit of a point-based analysis,
which is obtained when only the 5 manual markings
are used.

Both Eyes Information. In order to further improve
the detection rate, information from both eyes is con-
catenated in the feature vectors. It can be seen in
Table 6 that this leads to an improvement of approx.
+6% in the detection rate, in both the 3 cases scenario
as well as for the complete EAC set.

Temporal Redundancy. Taking into account that tem-
poral redundancy appears between consecutive frames,
we have also tried to filter potentially incorrect labels
using the preceding and succeeding neighbor frames.
This procedure is performed by filtering the individual
labels. An alternative would be to consider a multi-
frame feature, yet in such a case, the dimensionality
would be much too high and the classifier losses per-
formance.

The increase of accuracy is better for the case when
a single eye is used for detection (approx. +3%), and
results are only marginally improved when both eyes
are used (approx. +1%). Table 7 shows these results,
when our solution is applied to our larger database,
comprised of consecutive frames for each motion se-
quence.

Other Databases. For a thorough evaluation, the pro-
posed method (for single and both eyes information)
is also compared to the state of the art on other
databases, where the eye cues are partially repre-
sented. Since these databases are not designed for
an EAC-NLP application, each poses different chal-
lenges and are somewhat incomplete from the EAC
point of view. The HPEG database does contain all
7 EACs, but in a small number, the UUlm database
contains only 3 of the eye cues: Visual Defocus (VD -
looking straight), Auditory Remember (AR - looking
center–right) and Auditory Constructed (AC - looking
center–left). The PUT database contains all 7 cues but
disproportionably represented. Furthermore, all three
databases have a considerable head pose variation.

Comparative results can be seen in Table 8. Although
the results vary considerably across databases, the pro-
posed method offers the best results in all scenarios.
While testing on the ULM database, we looked also for
7 cases, and any output different from the correct one

is marked as an error; to make the test more relevant
to the work, we ignored that, for this specific test, only
three possible outputs could exist.

Computational efficiency Even if computational effi-
ciency has not been the main focus of this paper, the
proposed method is fast enough, requiring an average
of 125 msec per eye (95 msec for the eye bounding
box localization, 10 msec for the segmentation and 20
msec for the classification), with single thread Mat-
lab implementation and some binary routines. Even
un-optimized, the performance (250 msec per face) is
sufficient for real time EAC estimation. The testing
was performed on an Intel I7 at 2.7 Ghz, running in
single thread mode.

5. Discussion and Conclusions

If associated with non-visual movement, the direction
of gaze is in fact an Eye Accessing Cue, under the NLP
paradigm, and it may be used for better understand-
ing the mental patterns of a person. Therefore, the
purpose of this research was to develop an automatic
solution for recognizing Eye Accessing Cues in images
that contain a frontal face, and to implicitly determine
the corresponding mental process behind them.

While a number of efficient approaches were inves-
tigated, the best results were obtained by precisely
detecting the bounding box of the eye and perform-
ing a region-based analysis through an iris-oriented K-
Means segmentation.

Multiple tests were performed on the Eye-Chimera
database, a dataset that was specially designed for
EAC analysis by having all the 7 eye cues well rep-
resented. The results show that the proposed method
surpasses in accuracy two of the most efficient state of
the art methods for detecting landmarks and implic-
itly eye points. The proposed method was also shown
to surpass the eye landmarking technique proposed in
(Florea et al., 2013) for EAC analysis, proving that a
region-based solution provides better accuracy than a
point-based approach.

Furthermore, in a more thorough testing under various
acquisition conditions, the superior results of the pro-
posed method were also confirmed on other external
databases.

It was also shown that the accuracy of determining the
eye cues can be further improved by using information
from both eyes.

Finally, using the video (sequence) part of the Eye-
Chimera database, it was proven that, when dealing
with frame sequences, the recognition rate can be in-
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Table 5. Recognition rate [%] on the still Eye Chimera database for the 3 EAC cases scenario (when the focus is on the
type of mental activity) and for the 7 EAC cases scenario (the complete EAC set) when using iris relative position inside
the eye space.

Bounding Box Iris Detection RR [%] RR [%]
Method Method 7 classes 3 classes
Manual Manual 73.98 94.52
Manual Darkest Region 66.35 88.39
Manual (Valenti and Gevers, 2008) 32.30 36.40

Proposed Manual 67.21 91.03
Proposed Darkest Region 65.24 86.34

BoRMaN (Valstar et al., 2010) (Valenti and Gevers, 2008) 32.00 33.12
(Zhu and Ramanan, 2012) (Zhu and Ramanan, 2012) 39.21 45.57

(Florea et al., 2013) (Florea et al., 2013) 48.64 78.57
Proposed Proposed 77.54 89.92

Table 6. EAC Recognition Rate [%] for the proposed solution versus state of the art, when information from both eyes is
used.

Method RR [%]
(Valenti & Gevers,2008)
+(Valstar et al., 2010)

(Zhu et al.,2012)
Proposed
(1 eye)

Proposed
(2 eyes)

Still Eye
Chimera

7 classes 39.83 43.29 77.54 83.08
3 classes 55.73 63.01 89.92 95.21

creased by considering the temporal redundancy and
the correlation between consecutive frames. This ob-
servation, together with the low computational cost of
the proposed solution, offers potential for an applica-
tion where eye cues are detected, tracked and inter-
preted for mass applications.

Some additional issues remain for further investiga-
tion and development. First, Eye Accessing Cues are
related to non-visual tasks and, therefore, separation
between visual and non-visual tasks is required. In
normal conditions, the difference between voluntary
eye movements (as for seeing something) and invol-
untary ones (as part of non-verbal communication)
is retrievable by the analysis of duration and am-
plitude (Duchowski, 2007) as non-visual movements
are shorter and with smaller amplitude. However, in
both visual memory related task (Laeng and Teodor-
escu, 2002) as in the NLP theory, the actual differ-
ence between visual and non-visual tasks is achieved
by integrating additional information about the person
specific activities. More precisely, the Eye Accessing
Cues are expected to appear following specific pred-
icates (such as immediately after a question marked
by ”How?” or ”Why?”). Thus, for a complete au-
tonomous solution, the labels required for segment-
ing the video in visual and non-visual tasks should be
inferred from an analysis of the audio channel, that
should complement the visual data. To the moment, a
completely functional system would be the one where

the trainer/interviewer marks the beginning and the
end of the non-visual period, as he is aware of the na-
ture of communication.

Future research will focus on finding more features and
increasing the precision of the bounding box detection,
which are critical for good EAC detection. Supple-
mentary inclusion of the audio retrieved data should
enhance the trust of extracting eye cues and move on
step closer to complete and easy to use solution.
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