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Abstract

We propose a framework for the automatic recog-

nition of artistic genre in digital representations

of paintings. As we aim to contribute to a better

understanding of art by humans, we extensively

mimic low-level and medium-level human per-

ception by relying on perceptually inspired fea-

tures. While Gabor Filter Energy has been ap-

plied in art description, Dominant Color Volume

(DCV) and frameworks extracted using anchor-

ing theory are novel in this field. To perform the

actual genre recognition, we rely on a late fusion

scheme based on combining Multi–Layer Per-

ceptron (MLP) classified data with Support Vec-

tor Machines (SVM). The performance is eval-

uated on an extended database containing more

than 4000 paintings from 8 different genres, out-

performing the reported state of the art.

1. Introduction

George Bernard Shaw said that “without art, the crudeness

of reality would make the world unbearable” acknowledg-

ing that art has accompanied the human evolution through

his entire history. With the late growth of computers usage

in daily life, the art world began to be dissected by artificial,

intelligent systems. Tremendous efforts were put lately into

creating automatic image processing solutions that facil-

itate a better understanding of art (Cornelis et al., 2011),

either by obtaining high-quality and high-fidelity digital

versions of paintings (Martinez et al., 2002), either by tar-

geting subjects like image analysis and diagnostics, vir-

tual restoration, color rejuvenation, pigment analysis, brush

stroke analysis, lightning incidence, perspective anoma-

lies detection, three dimensional space recovery, craquelure

analysis or painting authentication, etc. as discussed in the

review of Stork et al. (Stork, 2009). While gathering more

than 20 years of intensive research, digital investigation of

visual art has not yet answered all questions.

A crucial aspects for artwork understanding is to success-

fully place it into a context. Typically, two cases are envis-

aged: a narrower one which is to nominate the painter and

a broader one, namely recognizing the artistic genre. The

state of the art in automatic identification of the context of

a painting, although witnessed noticeable results, still of-

fers space for improvements. The current proposal lies into

the second category, as we describe a system for automatic

identification of artistic genres.

1.1. Related work

In reviewing solutions to the artistic context for recogni-

tion problem (both painter and genre), we identify the very

typical pattern recognition approach: first, using features,

digitized paintings are described, than a learning scheme is

employed to extract common and respectively discrimina-

tive traits among envisaged classes. A condensate overview

of the state of the art methods may be followed in Table 1.

Automatic identification of the painter proved to be more

popular in the early stages. Thus, adopting the cosine

transform for extract repetitive texture features linked to a
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Table 1. Artistic genre/painter recognition methods: main differences.

Method Recognizes
No. of

classes

Desc.

level
Features

Learning

scheme

Keren (Keren, 2002) Painter 5 High Spectral (Cosine) Naive Bayes

Li (Li and Wang, 2004) Painter 5 High Wavelet 2D-MHMM

Widjaja (Widjaja et al., 2003) Painter 4 High Color, Skin texture SVM

Khan (Khan et al., 2010) Painter 10 Low Color, Shape BoW

Gunsel (Gunsel et al., 2005) Genre 3 Low Luminance, Color PCA-SVM

Zujovic (Zujovic et al., 2009) Genre 5 Low Texture, Edge, Color AdaBoost

Shamir (Shamir et al., 2010) Genre/Painter 3/9 High Edge, Texture WNN

Arora (Arora et al., 2012) Genre 7 High Classemes BoW/SVM

Condorovici (Condorovici et al., 2013) Genre 6 High

Dominant Color,

Anchors (Shape),

Gabor

Bagged ensem-

ble of trees

Proposed Genre 8 High

Dominant Color,

Anchors (Shape),

Gabor

Late fusion

Naive Bayes Classifier (NBC), Keren (Keren, 2002) iden-

tified several painters. In the same line, Li and Wang

(Li and Wang, 2004) used 2–dimensional Multiresolution

Hidden Markov Models (MHMM) over wavelet extracted

features to classify five Chinese ink painters. Widjaja et al.

(Widjaja et al., 2003) identified four painters based on se-

lected skin samples (described from both color and texture

point of view) with a reported accuracy of 85%. More re-

cently, Khan et al. (Khan et al., 2010) combined color and

shape information in a Bag of Word (BoW) approach to

recognize among 10 painters out of 400 images. Yet, taking

into account that a painter is consistently more conserva-

tive in the approached themes and in the techniques than his

peers, even from the same current, the painter recognition is

rather less intricate when compared with the genre recogni-

tion, which requires an extended level of abstraction. Fur-

thermore, due to the finite work capacity of any human,

the amount of paintings authored by a single artist is also

limited, thus in painter recognition cases, the database are

confined to less than 500 examples (with a maximum of 50

examples per class/painter).

The other direction of the context recognition, namely the

artistic genre recognition, is more difficult, sometimes even

for the specialists, due to the natural variation within the

artistic genres. In this direction, we identify two types of

systems: relying on low level features (such as pixel lu-

minances and color means or as total edginess) and rely-

ing on high level features. Systems with low-level fea-

tures were proposed by Gunsel et al. (Gunsel et al., 2005),

which dissociate three genres based on six basic features

extracted only from the luminance image and by Zujovic et

al. (Zujovic et al., 2009) who relies on a set of gray-level

features for a five–genre classification. The downside of

these methods is the reduced number of paintings used to

test the systems (107 paintings for (Gunsel et al., 2005) and

353 paintings for (Zujovic et al., 2009)).

Acknowledging the task difficulty, the solutions from the

second class introduce larger sets and higher complexity of

the features. More recently, Shamir et al. (Shamir et al.,

2010) adopted an extensive set of 548 features, out of

which, by means of the Fisher criterion filtering, selected

the most discriminative 83 ones, coupled with a weighted

nearest neighbor (WNN) classifier; as a result they discrim-

inated among 9 schools of art within 3 artistic currents for a

reported accuracy of 77% within a database of 517 images.

In the same line, Arora and Elgammal (Arora et al., 2012)

described paintings with Classemes (Torresani et al., 2010)

framework and distributed them in 7 currents by means of

a Bag of Words (BoW) schema with a Support Vector Ma-

chine (SVM) as classifier. Yet, the use of complex features

opens the way for high accuracy only in narrow cases (e.g.

specific artistic identification) and within confined varia-

tion.

In all the mentioned methods, the results are somehow

restricted in generalization due to the limited size of the

database (i.e. less than 1000 examples).

1.2. Paper structure

To motivate our construction we recall that Michelangelo

wrote down in Middle Ages that “a man paints with his

brains and not with his hands”. Furthermore, although

computer based discrimination among artistic genre is dif-

ficult, Wallraven et al. (Wallraven et al., 2009) noted that
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non expert humans still achieve considerably larger scores

than computers. Thus, we claim that the key to better accu-

racy is to rely on features compatible with human percep-

tion.

We addressed the problem from a perceptual point of view

and we constructed the descriptors to be highly correlated

with human perception, thus encoding the major classes of

perceptual features: luminance and shapes, color and, re-

spectively, texture and edge.

To ensure proper coverage of this problem, we propose a

new color descriptor named Dominant Color Volume and

for the dominant luminance levels, we introduce the an-

choring theory into the art digital analysis. For recognition,

we employed a late fusion scheme, as the human process

first each category of data and then aggregate the results.

The efficiency of the proposed system is tested on a un-

restrictive database of some 4200 paintings from 8 artistic

genres yielding high within-current and cross-current vari-

ation.

In the continuation of this paper, the motivational overview

of the proposed system and the descriptive features are pre-

sented in section 2; the data set and the classifier details are

given in section 3. Finally, the results obtained with the

proposed system are discussed in section 4, while the last

section is dedicated to conclusions and perspectives.

2. Feature Extraction

There were many attempts to unravel the human under-

standing of art from a neuro-scientific point of view. The

first significant results were disclosed by Zeki (Zeki, 1999),

who showed that different elements of visual art, such as

shapes, colors, and boundaries, are processed by different

pathways and systems in the brain, designed to interpret

each aspect of the art and there is no single central mech-

anism that receives and interpret visual art, but instead,

pieces of information received from a painting are selec-

tively redistributed to more specialized centers for process-

ing.

Ramachandran and Herstein (Ramachandran and Herstein,

1999) identified as the key for understanding the art per-

ception to be the identification of the perceptual processes,

rather than the analysis of the aesthetic properties, aug-

menting Zeki’s tweak on Michelangelo statement (“the

painter does not paint with his eyes, but with his brain”).

Thus we divided our set of features into three categories,

each closely connected with one of the important percep-

tual elements: lightness perception and shape extraction,

color distribution and, respectively, texture and edge anal-

ysis.

For the image shapes and lightness description we relied

on the anchoring complex image decomposition, derived

from the gestalt (shape) theory; for the color, we com-

puted the Minimum Volume Enclosing Ellipsoid over the

3D Lab Color Histogram to get the Dominant Color Vol-

ume (DCV), while for textures and edges we employed the

Gabor energy. These features are presented in Table 2 and

are extracted for each painting.

2.1. Anchoring Theory and Frameworks

Although many studies attempted to explain and to mimic

the human perception of lightness and scene decomposi-

tion, no definite model exists. However, the reformulation

by Gilchrist et al. (Gilchrist et al., 1999) of the anchoring

theory for complex scene proved to pass many perceptual

tests and explained many phenomena.

The anchoring theory states that when depicting a scene,

the relation between the representation luminance and the

scene lightness can be correctly perceived only through a

mapping between the luminance value and the value on the

scale of perceived gray shades, process called anchoring.

Once the anchor is established, the lightness value for each

luminance is determined as the ratio between the value and

the anchor.

For determining the anchoring there are two known the-

ories: the average luminance rule and the highest lumi-

nance rule. The first approach states that the average lumi-

nance in the visual field is perceived as middle gray, such

that luminance values should be anchored by their average

value to middle gray. The highest luminance rule anchors

the highest luminance level to a lightness value perceived

as white. However, some experiments (Li and Gilchrist,

1999) proved that if a small white area is surrounded by

dark areas it appears to be self-luminous, being perceived

as lighter than white. As a consequence, the highest lu-

minance rule was redefined such that the highest dominant

luminance within the field of view becomes a stable anchor.

However, when the darker areas become dominant, the an-

chor is determined as a weighted average of the luminance

proportionally to the occupied area.

Li and Gilchrist (Li and Gilchrist, 1999) provided rich ex-

perimental evidence that favored the highest luminance rule

in comparison to the average luminance rule.

When it comes to increasingly complex scenes, the anchor-

ing theory asserts that scenes are perceived by the humans

in terms of consistent areas, called frameworks. A frame-

work is defined as a region of common illumination. Re-

garding the image perception, the human brain estimates

the lightness within each framework through the anchor-

ing to the luminance perceived as white, followed by the

computation of the global lightness. We claim that scene

decomposition in frameworks is crucial for unravelling the
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Table 2. Features extracted from paintings and used for classification.

Feat.

No.

Type

Feature
Description Interpretation

Number of

values

1.1-1.2

Anchor:

Region

Cardinality

No. of pixels belonging to

the current framework

Indication about the spatial rela-

tionship in the painting

2 Fmwks

×1=2

1.3-1.4
Anchor:

Articulation
Measure of the dynamic

range in the framework

The luminance variation inside

the current region

2× 1 = 2

1.5-1.6
Anchor:

Mean Value
The average luminance of

the current framework

Indicates the luminance value of

the current region

2× 1 = 2

1.7-1.10
Anchor:

Center pos.
Position of the region center

inside the image

Indicates the position of the

framework in the painting

2× 2 = 4

2.1-2.9
DCV:

Directions
Principal directions of the

ellipsoid, computed as the

eigenvectors of the matrix

representing the ellipsoid

Indication about the main colors

used in the painting

3× 3 = 9

2.10-2.12

DCV:

Geometric

Center

Coordinates of the ellipsoid

center

Indication about the painting

dominant color

1× 3 = 3

2.13-2.15
DCV:

Axis length
Length of the ellipsoid axis,

computed as the eigenvalues

of the matrix representation

Indication about the color

gamut size

3× 1 = 3

2.16-2.18

DCV:

Center of

mass

Center of mass coordinates,

computed as the weighted

average of the current mode

bins

The painting dominant color;

together with geometric cen-

ter, offers information about the

mode’s shape

1× 3 = 3

2.19

DCV:

Geometric

Volume

Ellipsoid’s volume Information about the gamut’s

size

1× 1 = 1

2.20
DCV:

Mass
Number of pixels belonging

to the current mode

Information about the colors

variation in the painting

1× 1 = 1

2.21

DCV:

Punctual

Density

Average bin load for the cur-

rent mode, computed as the

ratio between the number of

bins and the number of pix-

els belonging to the current

mode

Information about the colors

variation (e.g. a high percent-

age of pixels located in a small

volume mode indicates a small

number of colors used in the

painting)

1× 1 = 1

2.22

DCV:

Volumetric

Density

The mass to the geometric

volume ratio

Indication about the shape of the

mode

1× 1 = 1

2.23

DCV:

Number of

modes

Number of significant

modes in the histogram

Information about the color

variation in the painting

1× 1 = 1

3.1-3.24
Gabor

Energy
The normalized bins of the

Gabor energies

Magnitude of the specific orien-

tation and band

3 scales ×
8 orient

= 24
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painter scene composition procedure, as artistic genres do

differentiate themselves by the scene composition tech-

nique.

In terms of images, the first computational model for the

anchoring theory was provided by Krawczyk et al. in

(Krawczyk et al., 2005) for rendering high dynamic im-

ages. We followed the same procedure, that relyed on seg-

mentation with mean-shift (Comaniciu and Meer, 2002)

for initial decomposition, followed by bilateral filtering

(Durand and Dorsey, 2002) for removing very small an-

chors. An example of a painting and the extracted frame-

works is shown in Fig. 1.

While the frameworks are the shapes that holistically de-

scribe a painting, for matters of classification, we extracted

specific parameters for each of the detected frameworks.

The first parameter describing the framework was its car-

dinality, computed as the number of pixels belonging to

the current framework. The next feature considered for de-

scribing a framework was its articulation, a measure pro-

posed by Krawczyk in (Krawczyk et al., 2005). The artic-

ulation represents the dynamic range of the current region

and is modelled using a Gaussian function:

Ai = 1− e−
9

2
(maxYi−minYi)

2

, (1)

where Ai is the articulation for the framework i and minYi

and maxYi represents the minimum and maximum lumi-

nance in the current framework.

The other two parameters extracted for each framework

were the average luminance and its center of mass within

the image. As the number of frameworks may vary from

painting to painting, we restricted the description to the the

most significant two frameworks (showing the relationship

between the two most important areas of the painting).

2.2. Color Description

Rappaport (Rappaport and Rapaport, 1984) noted that dif-

ferent artistic currents approximately match different his-

toric periods and techniques known at that time and each

of the currents is formally described as inspiring specific

sentiments that are subsequently associated with colors.

The color palette of a painting may be accurately de-

picted by the 3D Color Histogram, which was shown to

be precisely connected to a scene (thus painting) structure

(Novak and Shafer, 1992). The natural choice for com-

putation is the Lab color space, as it exhibits the most

perceptual–like inter–color distances. Although the whole

3D histogram might offer plenty of information about the

color palette, it would have been a difficult task to describe

the most representative modes. Thus, we opted for finding

the Minimum Volume Enclosing Ellipsoid (MVEE) that

contains color modes, constructing the so-called Dominant

Color Volume (DCV).

For the representation of the color palette, we opted for

a reduced set of parameters, extracted as described below

(and also exemplified in Fig. 2):

1. Compute the 3D Histogram with N3 bins. The his-

togram is a hyper-volume (4D volume). Depending

on the actual data, this volume may be sparse (made

from smaller, disjoint, volumes) or more compact.

2. Ignore bins smaller than certain threshold.

3. Label the histogram modes (which are in fact compact

volumes) and disregard the modes with fewer than a

certain threshold bins. A histogram mode consists in

adjacent histogram bins (compact volumes).

4. Keep only the biggest histogram mode and compute

the Minimum Volume Enclosing Ellipsoid as defined

in (Kumar and Yildirim, 2005) for the cloud of 3D

points.

5. For the obtained ellipsoid compute the descriptive pa-

rameters presented in Table 2.

While the computation of the Lab 3D color histogram is

straightforward, for determination of the MVEE, we re-

called that Moshtagh (Moshtagh, 2005) provided a solution

for representation of color data from a selected object.

In (Moshtagh, 2005), it was noted that having a set of points

S = {x1,x2, . . . ,xm} ∈ R
3 in the 3D space, the enclosing

ellipsoid ε in center form is defined as:

ε = {xi ∈ R
3|(xi − c)TE(xi − c) ≤ 1}, ∀i = 1, . . . ,m

(2)

where c ∈ R
3 is the center of the ellipsoid and E contains

the ellipsoid parameters. The problem was to determine the

center, c and the ellipsoid parameters E, and it has been

shown (Moshtagh, 2005) that a solution is found by the

standard gradient ascent algorithm.

Due to the fact that the main discrimination between arts

movement is not necessarily offered by the colors used,

but by their distribution, high classification performance is

achievable by keeping only the largest mode. For exam-

ple, a scarce mode containing few pixels reflects the usage

of a wide range of colors, while a large and dense mode

corresponds to the usage of a single main color. The el-

lipsoid containing the greatest number of image pixels was

described through a set of parameters presented in Table 2.

Various values for N (number of histogram bins) were

tested and it turned out that for values higher than N = 6,
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Figure 1. Original Painting (left), the extracted frameworks (center) and the two largest frameworks marked with green/yellow (shades

of gray) used in classification (right).

the computation times drastically increased, despite the fact

the performance remained virtually constant (less than 1%
improvement of the detection rate).

2.3. Texture and Edge Features

Edginess is the complementary aspect in terms of both

human perception and art theory (Melcher and Cavanagh,

2011) found to be relevant for detecting a genre. Here

we envisaged both magnitude (as for example, in Impres-

sionism objects tend to have softer edges, while in Cubism

edges are sharper) and orientation.

To assess edginess, we used Gabor filters, as they are

known to mimic human perception in terms of contour

analysis (Daugman, 1985). We used two banks of Gabor

filters, as described in (Grigorescu et al., 2002): one with

symmetric and one with antisymmetric Gabor kernels. As

they have 8 orientations and 3 scales, the filter bank lead to

24 Gabor feature images r(x, y), computed as follows:

r(x, y) =

∫

D

I(ξ, η)gλ,θ,ϕ(x− ξ, y − η)dξdη, (3)

where I(x, y) is the input image and gλ,θ,ϕ(x, y) is the 2-D

Gabor function described by:

gλ,θ,ϕ(x, y) = e−((x′2+γ2y′2)/2σ2) cos(2π
x′

λ
+ ϕ), (4)

with x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ, σ =
0.56λ and γ = 0.5.

The Gabor Energy Image was formed by the combination

of the feature images filtered by the two mentioned banks.

The vector of Total Gabor Energy was, then, computed for

each of the 24 vector–filters.

3. Database and Implementation

3.1. Database

Cornelis et al. (Cornelis et al., 2011) noted that one of the

most important challenges when it comes to painting genre

analysis is the lack of a standard public database. Most

state of the art methods were evaluated on databases ac-

quired either from the public domain, either selecting spe-

cific images from Artchive2 or in partnership with art mu-

seums or galleries. Yet, to the moment, the state of the art

databases are not public and, as mentioned in the introduc-

tion, are limited in size.

We evaluated the performance of our system on a database

containing 4119 paintings belonging to 8 different art

movements (Baroque, Cubism, Renaissance, Byzantine

Icons, Impressionism, Greek Pottery Paintings, Rococo

and Romanticism), from more than 600 authors. Consid-

ered pairwise, the chosen genres includes pairs that are both

separable and easy to discern classes (like Icons vs. Ro-

coco) but also mixed and hard to separate (e.g. Baroque

vs. Renaissance). The images were acquired from various

sources (e.g. scanning art albums, Internet) hence deliber-

ately lacking cohesion in the acquisition conditions.

3.2. Classifier Design

To recognize the artistic genre when given an image, we

recall that Zeki (Zeki, 1999) proved that different elements

of visual art such as shapes, colors, and boundaries are

processed by different pathways and systems in the brain.

In classifying terms this corresponds to a late fusion clas-

sification scheme (Snoek et al., 2005). The late fusion

paradigm states that unimodel features are first reduced to

separately learned concept scores, then these scores are

integrated to learn concepts, as opposed to early fusion

schemes that integrate uni–modal features before learning

concepts (i.e. the feature set forms a single vector that is

sent to a single classifier).

2 http://www.artchive.com/
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Figure 2. Example of 3D Histogram Modelling. (a) Original input image. (b) Initial 8 × 8 × 8 3D Lab Histogram (redness of dots

means larger bins). (c) The two histogram modes obtained after segmentation. (d) Dominant Color Volume for the most representative

histogram mode.

Thus, instead of merging the three feature categories

(composition-anchoring, color palette-Dominant Color

Volume and texture/edginess-Gabor Energy) into a final

feature vector that is fed to a classifier (according to

the early fusion paradigm), we trained three independent

Multi–Layer Perceptron (MLP) classifiers, one for each of

the feature categories. Each MLP had one hidden layer

with 20 neurons. The outputs of the three classifiers are

then fed to a final SVM classifier (trained with the sequen-

tial minimal optimization method) that will offer the final

result. The MLPs were implemented in Matlab, while for

the SVM we relied on the implementation from WEKA

(Hall et al., 2009).

Training/testing scheme For testing, a 10-fold cross val-

idation technique was assumed; the 10-fold rule was ap-

plied for each artistic current.

Table 3. 3D Histogram Color Spaces Performance.

Color space RGB Lab HSV

DR 70.27± 2.7 73.32± 2.36 68.82± 2.29

Performance measure The detection rate (DR) for a

genre is defined as the number of correctly identified im-

ages from a given genre normalized to the total number of

paintings of the genre. When the overall results were pre-

sented, the detection rate was averaged over all envisaged

images and genres.

3.3. Feature Choice and Parameter Tuning

In order to asses the optimal features parameters we per-

formed a series of experiments on a subset of 1000 images

using a 10-fold classification with a late fusion scheme. As

it will be discussed further, the scheme was made out of a

first level of 3 Multi-Layer Perceptrons, aggregated by an
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Table 4. Features categories importance

Features Detection Rate

Anchoring 47.05%

Dominant Color Volume 61.16%

Gabor Energy 42.81%

Anchoring + DCV 67.66%

Anchoring + Gabor 59.93%

DCV + Gabor 70.21%

Anchoring + DCV + Gabor 73.32%

ensemble of 10 bagged classification trees with unlimited

depth.

Color The performance of the color features (Dominant

Color Volume) was evaluated for three color spaces using

these features alone. We considered three of the most com-

mon color spaces: RGB, HSV and Lab. While the RGB

color space is the most common representation for digital

images, the HSV color space mimics the way human de-

scribe colors. The last choice, the Lab color space, has the

property of being perceptually uniform for human vision,

meaning that a change of a certain amount in one of the

color values produces a change of a similar importance for

the human visual system. As Table 3 shows, the best aver-

age performance was obtained for the Lab representation,

hence proving the perceptual claim.

Edges/Texture As a replacement for Gabor energy we

considered the Histogram of Oriented Gradient (HOG) as

it was found to offer a basis for reliable aesthetic measures

(Redies et al., 2012). Yet the Gabor Energy features offered

a marginally better (+2%) detection rate.

Feature importance In order to assess the contribution

of each feature, two tests were performed: first we identi-

fied the contribution of each feature, by removing the fea-

ture and re-classifying the database; secondly we consid-

ered the Fisher score of that feature.

The results for individual contribution are shown in figure

3 (a). Noting that the worst feature was one of the Gabor

energies, we concluded that redundancy had low values in

the proposed solution.

The results on feature importance calculated with the

Fisher criterion can be seen in figure 3 (b). One may see

that the Dominant Color Volume features play a more im-

portant role. In order to validate this we performed an-

other series of experiments in which we removed one or

two whole categories of features. As can be seen in Table

4, the Dominant Color Volume features had, indeed, the

highest contribution.

Classification choice It should be now accepted as com-

mon knowledge the fact that there is no a priori ubiqui-

tous optimal classifier, and depending on the specific prob-

lem, different classifiers perform best (Michie et al., 1994)

(ch.9,10), (Forman and Cohen., 2004). To determine if the

proposed choice of classification is the best compared with

other variants, based on both late fusion and early fusion

paradigms, we have considered seven classifiers for early

fusion and four of them for late fusion. For early fusion, we

relied on the implementations offered in the open-source

machine learning library Weka (Hall et al., 2009). For the

initial classifier choice, WEKA offers a pre-optimization

that in most of the cases leads to near-optimal result.

For the late fusion, we first took a decision based on each

of the three categories of features considered using the pre-

sented MLP scheme. The late decision is taken with vari-

ous classification schemes. As presented in Table 5, the late

fusion classification scheme offers clear advantages when

compared with in the the early fusion classification. This

was expected, taking into account that human process sep-

arately each category of information and the classification

target, namely the division in genres, is introduced by hu-

mans. From a machine learning point of view, the rather

large dimensionality (i.e. 54) of the feature space compared

with the database population size (i.e. maximum 4119),

produces a sparse dataset which imposes an upper bound-

ary for the machine learning performance. This fact is also

proved by the significantly larger accuracy achieved by the

Bagging (Bagged Ensemble of Tree) when compared to the

Random Forest (RF) in the early fusion case, pointing to the

insufficiently large population for the randomization part of

the RF.

The best performance was achieved with a SVM having

gaussian (RBF) kernel, with penalty parameter C = 4 and

kernel width Γ = 1. The performance of the linear kernel

(which was shown to be a degenerated case of RBF kernel

(Keerthi and Lin, 2003)) presented a decrease with −2.5%
when compared with the basic version.

Motivated by the superior performance of the SVM in the

second layer of classification, we have tested a late fusion

scheme where Support Vector Regressor (SVR) are used

on the first layer, to aggregate each of the features types.

Results are in table 6. Yet, the MLP performance was still

better, pointing to the existence of a linear dependence be-

tween feature’s dimensions.

4. Results and Discussions

The overall detection rate over the database containing

4119 images from 8 genres is 72.24%, marginally lower

than the 73.32% obtained in the 1000 images training ex-

periment. In order to asses how the proposed solution be-
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(a) (b)

Figure 3. Contribution of individual features (as named in table 2): (a) the amount of decrease in DR if the specified feature is removed

form the system (higher values show more significant contribution). (b) Fisher Score according to the Fisher features selection criterion

Table 5. Average Detection Rate (ADR) for tested classifiers (Bayesian Network – BN, Multilayer Perceptron – MLP, Support Vector

Machine – SVM, Bagging – Ba, LogitBoost – LB, Multiclass Classifier – MCC, Decision Table – DT, Random Forest – RF ). Details

regarding the implementation of the classifiers are to be found in (Hall et al., 2009) and references therein.

Classifiers BN MLP SVM Ba LB MCC DT RF

Early fus. [%] 58.19 65.42 68.51 68.9 64.16 71.25 50.37 63.34

Late fus. [%] – – 73.32± 2.24 72.11± 2.43 – 71.62± 2.28 – 69.66± 2.02

Table 6. Average Detection Rate (ADR) achieved for various re-

gressors on the first level (as they return continuous values and

not categorical) of the early fusion schema: Multilayer Percep-

tron – MLP (1 layer, with 20 neurons), Support Vector Regressor

– SVR with linear kernel (lin) and Gaussian (RBF) kernel (C = 4,

Γ = 1). The second level classifier was a SVM -RBF.

Classifiers MLP SVR-lin SVR-RBF

DR [%] 73.32± 2.43 72.10± 2.85 72.20± 2.55

haves for each tested art movement, we computed the con-

fusion matrix which is detailed in Table 7 and visually pre-

sented in figure 4 (a).

Next, we tested the behavior of our system with respect

to the variation of the number of classes. As expected,

the overall detection rate decreased with the increase of

possible artistic genres, but the results remained accept-

able for all tested genres. All possible combinations of the

following eight genres were tested: Baroque, Cubism, Re-

naissance, Byzantine Icons, Impressionism, Greek Pottery

Paintings, Rococo and Romanticism. In Fig. 4 (b) the aver-

age, the lowest and the highest detection rates are presented

for each possible number of classes.

It can be seen that for some number of classes (genres)

the difference between the best and the worst detection rate

can be significant. This can be explained through the gen-

res that were chosen; if the paintings belonged to similar

genres, (e.g. Baroque, Rococo and Romantism - 63.87 %)

the detection rate can be smaller, while if the paintings be-

longed to more distinct genres (Cubism, Renaissance and

Romantism - 88.97 %), a higher detection rate is obtained.

Figure 5 shows examples of incorrectly classified paint-

ings. In general, the miss–classification occurred between

more similar genres, harder to discriminate even for a hu-

man user. The similarities between different artistic genres

can also be observed from the confusion matrix presented

in Table 7.

While the computation time is not of interest at the cur-

rent stage of the work, we note that a painting classification

query takes in average 5400 msec on Intel 2.7 GHz in Mat-

lab code, out of which some 5000 msec are required by the

bilateral filtering used in determining the image anchors.

4.1. Comparison with state of the art

Two main difficulties in comparing the proposed approach

with the state of the art solutions are encountered: the use

of different and non-public databases, doubled by the lack

of author approved training and testing code. Thus, dif-

ferentiating factors remain the size of the database and the

average detection rate when the same number of currents is

assumed.
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Table 7. Database content and Confusion Matrix computed for a 10-fold run for the entire database.

Bar Cub Ren Ico Imp Pot Roc Rom Total Error DR

Baroque 492 8 115 2 44 0 35 35 731 239 67.31

Cubism 26 360 34 44 99 1 5 6 575 215 62.61

Renaissance 121 13 316 4 21 0 6 4 485 169 65.15

Icons 7 22 3 564 29 0 0 0 625 61 90.24

Impress. 27 77 16 31 600 0 17 21 789 189 76.05

Pottery 1 2 0 1 0 328 0 0 332 4 98.80

Rococo 87 3 8 1 33 0 132 28 292 160 45.21

Romanticism 74 0 13 0 40 0 29 134 290 156 46.21

(a) (b)

Figure 4. (a) Confusion matrix (b) Average, best and worst detection rate (DR) with respect to the number of classes.

We stress that our database is about 10 times larger than any

reported solution. Each author has used, apart the different

number of image examples per class, different classes. The

exact number of genres, as well as the number of paint-

ings in the used database and the average detection rate

are presented in Table 8. To directly compare the perfor-

mance, we also report the detection rate achieved, in aver-

age, for the same number of genres. In interpreting these

results, we shall recall the results reported by Wallraven

et al. (Wallraven et al., 2009) for non-expert human user

manual classification, which set the “reasonable” achieve-

ment of an automatic image classification system immedi-

ately above 70% average detection rate for around 8 artistic

genres.

Considering the presented results, one may easily notice

that even using much smaller databases, only Gunsel et

al. (Gunsel et al., 2005) outperformed the here-proposed

method in terms of accuracy. For a second test, we have

implemented and tested the Gunsel solution on our exten-

sive database. In such a case, Gunsel’s solution offered

an overall DR of 36.63%. The explanation lies in the

larger database used here with more paintings, acquired

with more variability. The results of the comparison are

shown in Table 9, proving that, indeed, the here-proposed

solution outperformed the solution in (Gunsel et al., 2005).

5. Conclusion

In this paper we proposed a perceptually inspired system

for the automated analysis of paintings, applied for the

discrimination among eight artistic currents. Both the ex-

tracted features and the classifier were specifically selected

as being relevant for human perception. We tested our sys-

tem on more images than any reported state of the art meth-

ods and we still provided higher values in terms of classi-

fication accuracy. Although the results are satisfactory, a

100% DR is practically impossible to achieve yet, as long

as the separation between some genres is not always very

clear even for art historians.

As continuation paths, we envisage two directions. First,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Examples of incorrectly classified paintings. (a) Impressionism as Cubism: Mary Cassatt - ”The Coiffure Study” (b) Roman-

ticism as Pottery: Asher Brown Durand - ”Kindred Spirits” (c) Renaissance as Baroque: Raphael - ”St. Michael Vanquishing Satan”

(d) Ortodox Icon as Rococo: Russian Icon - The Descent into Hell (e) Baroque as Renaissance: Palomino - ”Assumption of the Virgin”

(f) Pottery as Cubism: Greek Pottery Painting (g) Rococo as Romanticism: Martin Johann Schmidt - ”Diana in Akteon” (h) Cubism as

Impressionism: Picasso - Watercolor

the system has to be further refined for even more improved

accuracy and tested for more artistic genres and paintings.

The second direction is to adapt the perceptual background

of the feature and classifiers used in this work towards

the analysis of other artistic-related image types (drawings,

artistic photography, comics, etc.).
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