A PSEUDO-LOGARJTHMIC IMAGE PROCESSING FRAMEWORK FOR EDGE DETECTION

Constantin Vertan, Alina Oprea, Corneliu Florea, Laura Florea

Politehnica University of Bucharest I mage Processing and Analysis Laboratory

Abstract. The paper presents a new [pseudo-] Logarithmic Model for I mage Processing (LIP), which allows the computation of gray-level addition, substraction and multiplication with scalars within a fixed graylevel range [0;D] without the use of clipping. The implementation of Laplacian edge detection techniques under the proposed model yields superior performance in biomedical applications as compared with the classical operations (performed either as real axis operations, either as classical LIP models).

Logarithmic image processing (LIP) approachesp homomorphism which transforms the product into a sum (by logarithm)

Results

Homomorph LIP LIP type Laplacian

[^0][^1]
[^0]: Conclusions We presented a new [pseudo-] Logarithmic Model for Image Processing (LIP), which allows the computation of graylevel addition, substraction and multiplication with scalars within a fixed gray-level range [0;D] without the use of clipping. The implementation of classical edge detection techniques under the proposed model yields significant superior performance as compared with the classical operations (performed either as real axis operations, either as classical LIP models). The tests performed on various images from biomedical applications show the good performance of the proposed approach.

[^1]: Acknowledgments
 This work was supported in part by the Romanian National Agency for Scientific Research under the PNCDI2 51-021.2/2007 research grant.

