Artistic Movement Recognition by Boosted Fusion of
Color Structure and Topographic Description

Corneliu Florea, Cosmin Toca

Image Processing and Analysis Laboratory,
University Politehnica of Bucharest, Romania

corneliu.florea@upb.ro; cosmin.tocalgmail.com

Abstract

We' address the problem of automatically recognizing
artistic movement in digitized paintings. We make the fol-
lowing contributions: Firstly, we introduce a large digitized
painting database that contains refined annotations of artis-
tic movement. Secondly, we propose a new system for the
automatic categorization that resorts to image descriptions
by color structure and novel topographical features as well
as to an adapted boosted ensemble of support vector ma-
chines. The system manages to isolate initially misclassi-
fied images and to correct such errors in further stages of
the boosting process. The resulting performance of the sys-
tem compares favorably with classical solutions in terms of
accuracy and even manages to match modern deep learning
frameworks.

1. Introduction

The expansion of the digital data acquisition favors an
eased access to works of art for the general public in paral-
lel to the assembly of large collections over the web. While
in the art domain it is often said that “precise formulations
and rigorous definitions are of little help in capturing the
meaning of art” [12, 33], in computer science there is a
continuous effort to create autonomous systems that under-
stand and replicate art concepts. For instance, there have
been recent reports of algorithms that alter a digital image
to replicate a painter style [16]. Alternatively and, arguably
harder, is the task of automatic context recognition given a
digitized painting. One of the broadest possible implemen-
tation of context recognition is the automatic art movement
identification.
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According to current online resources for art such as
Artyfactory?, the concept of art movements can be described
as “collective titles that are given to artworks which share
the same artistic ideals, style, technical approach or time-
frame” [1]. While some pieces of work are clearly set into
a single art movement, others are hard to classify—even for
experts—as inceptive ideas sprung up randomly in different
locales and they require contextual or background knowl-
edge outside influence [12]. This work addresses the prob-
lem of an automatic categorization of digitized paintings
into different types of art movements.> While other direc-
tions of image classification such as scene or object recog-
nition benefit from large databases and agreed evaluation
protocols, painting art movement recognition mainly lacks
such aspects. Often, the performance assessment of a new
method is carried out on a small database with only few
paintings belonging to a certain art movement.

The contribution of this work is twofold: Firstly, we pro-
pose a new database consistent in terms of size and anno-
tations. Secondly, we propose an adapted learning frame-
work that is based on complementary feature extraction and
boosted ensembles of support vector machines. The classi-
fication performance of our system is superior to those of
other state-of-the-art models such as random forests and
deep convolutional neural networks and reaches valuable
accuracies for the task of art movement classification.

2. Related Work

Several solutions have been proposed for the automatic
art movement recognition. Initially, systems were intro-
duced along with an associated database. Later works resort
to test images from publicly available visual art encyclope-
dias such as wikiart®.

2http://www.artyfactory.com

3Depending on the source at hand, the concept of art movement consid-
ered in this work can also be named as “style”, “genre” or “artistic current”.

‘https://www.wikiart.org



Method Movements Size Test Ratio Cv RR

Gunsel et al. [17] 3 107 53.5% no 91.7%
Zujovic et al. [44] 5 353 10.0% yes 68.3%
Siddiquie et al. [38] 6 498 20.0% yes 82.4%
Shamir et al. [37] 3 517 29.8% no 91.0%
Arora and Elgammal [3] 7 490 20.0% yes 65.4%
Khan et al. [21] 13 2,338 46.5% no 62.2%
Condorovici et al. [8] 8 4,119 10.0% yes 72.2%
Agarwal ef al. [2] 10 3,000 10.0% yes 62.4%
Karayev et al. [20] 25 85,000 20.0% yes n/a

Bar et al. [5] 27 47,724 33.0% yes 43.0%
This work 18 18,040 25.0% yes 50.1%

Table 1. Overview of art movement recognition systems along with the sizes of the considered image databases. The sizes only refer to
the database used for the art movement recognition system. The recognition rates (RR) are taken from the respective works (the test ratios
depict the percentage of the databases being used for the systems’ evaluations). Karayev et al. [20] report precision-recall values.

2.1. Databases

The most recent approaches and databases are listed in
Table 1. In general, the sizes of the databases and the num-
ber of art movements considered increased over time, while
the reported classification performances seem to have de-
creased. More recent works collected images from the web
to create databases [5, 20, 21]. Khan et al. retrieved images
from 91 painters for Paintings-91 database [21]; here
the movement annotation is available for painters associated
with only one main art movement. In contrast, we allow the
paintings of one author to be placed in different movements.
For instance, Picasso authored more than 1,000 works, cre-
ating not only cubist, but also impressionist or surrealist
works. Karayev et al. [20] collected an impressive number
of images solely from wikiart and tested various com-
binations of descriptors and classifiers inspired from deep
convolutional networks and metric learning while Bar et
al. [5] retrieved a subset of images and performed a parallel
experimentation. While wikiart was our main source,
we also retrieved data from other websites and, more im-
portantly, we have manually refined the collection and the
labeling in two iterations (see below).

To conclude, many of the databases previously used tend
to be quite small and are often based on non-standard evalu-
ation protocols that might foster overfitting effects. Thus, a
large-scale database with a fixed evaluation protocol should
be beneficial for further development in this interesting and
challenging field.

2.2. Art Movement Recognition

Again we refer to Table 1 for a systematic presentation
of previously proposed solutions. Most systems addressed

the problem via a classical approach: image description
followed by potentially feature selection and classification.
Typical texture-based description are often achieved via,
e.g., Local Binary Patterns (LBP) [2, 5, 21], Histogram of
Oriented Gradients (HOG) [2, 21], or Gabor Filters [8, 37].
For color description, either color variants of the gray levels
texture descriptors (e.g., colorHOG or colorSIFT) or meth-
ods such as Color names [21] are used.

The great advance of machine learning in the last
decade also impacted painting description. For instance,
Arora et al. [3] rely on so-called Classemes descriptors,
while Karayev et al. [20], Bar et al. [S] and Peng et
al. [36] use convolutional filters from pretrained deep con-
volutional neural networks (ImageNet), as suggested by
Donahue et al. [11]. Most other approaches proposed so
far rely on the standard application of support vector ma-
chines (SVM) [2, 5, 21, 36].

3. Approach

The approach proposed in this work resorts to color
structure and topographic features as descriptors. These
descriptors are then processed by an ensemble of adapted
boosted support vector machines.

3.1. Features

Given a structuring window of 8 x 8, the color struc-
ture descriptor (CSD) [30] counts the number of times a
particular color is contained within the structuring element,
as the structuring element scans the image. The CSD par-
tially accounts for spatial coherence in the gross distribu-
tion of quantized colors. It has been used for color image
description, yet in the later period other solutions have been



preferred [39].

The concept of complete topographical image descrip-
tion is based on the following derivations: By interpreting
a planar image as surface, i.e., as twice differentiable func-
tion f : R? — R, one can consider the Taylor series expan-
sion to approximate f(z,y) in a local region around a given

point (z,y):
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where V_} is the gradient and H(z,y) the Hessian
matrix of f. In a topographical interpretation, the vec-
torial gradient indicates inclination, while the Hessian
provides cues about local curvature. Typically the gra-

dient is presented in polar coordinates, Vf(z,y) =
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From the 2 x 2 Hessian, one can retrieve the eigenvectors,

Vi (@, y), Vi(x,y) and eigenvalues, A}, (z,y), A\3,(z, ).
Similarly to the gradient, one can express the Hessian
eigenvectors in polar coordinates as magnitude and orienta-
tion (here, only the first eigenvector orientation matters as
the second one is perpendicular). Thus a pixel (z,y), is de-

scribed by the following components: f(z,v), |V f(z,y)|.

O4(x.y). [VA(x. )|, [V (z,y)]. and O (z,y).

In previous works, the local pixel value is the base,
among others, for the local invariant order pattern (LIOP)
descriptor [41]. Gradient orientation (and magnitude) is the
basis of histogram of oriented gradient (HOG) [9]. The sec-
ond derivative is used to locate key points in SIFT (Scale-
invariant feature transform) or to describe shapes by means
of principal curvature. Also Deng et al. [10] describe re-
gions using principal curvature for object recognition, while
Florea et al. [14] aggregate first and second derivative infor-
mation to describe faces for pain intensity estimation. We
propose to use all information for texture description and
we stress that the use of curvature for this purpose is novel.

For a refined description, one uses the concept is multi-
scale topography, which assumes the computation of the
derivatives in the scale space [14, 27]. There, the image is
replaced by the scale space of an image F'(z,y,0):

F(x,y,0) = G(z,y,0) * f(z,y), ()

where * stands for convolutions and G(x,y, o) is a Gaus-
sian rotationally symmetric kernel with variance o2 (the
scale parameter). The derivative of F' is found by convolv-
ing the original image f with the derivative of G. A pyra-
midal version of the topographic descriptor requires merely
consideration of multiple values for o.

To provide global image descriptors it has been
suggested to aggregate the topographic set into his-
tograms [14]. This representation was named histogram
of topographic (HoT) descriptor and has been successfully
been applied for face analysis. We have implemented a sim-
ilar version and our results show its usefulness in describing
image texture.

3.2. Boosted Support Vector Machines

Our approach is based on support vector machines with
radial basis function kernels (RBF). Yet to increase the
overall performance, data from multiple features has to be
brought together. As direct fusion into a single classifier
failed, we consider a modified boosted fusion procedure in-
spired by the SAMME algorithm [43]: Given n training ex-
amples {(x1,Y1), - -+, (Xn,yn)} € R x {—1,+1}, a stan-
dard support vector machine aims at minimizing

d(w) = twlw+ C’Zivzl &, s.t.
3)
and can be extended with individual weights for the training
patterns via [42]:

o(w) = twlw+ C’Zij\il Wi, s.t.
yi(<W,¢(Xi)> + b) >1- fi, gi >0, i€ {1, Ce ,n}.
“)

Here, C is a cost parameter determining the trade-off be-
tween training loss and large margin and Wy, ..., Wy are
the weights associated with the training points. The feature
mapping ¢ stems from a kernel function; a prominent one
is the RBF kernel defined as k(x,z) = (®(x),P(z)) =
exp (v?[|x — z||). Given the matrix X € R"™*¢ consist-
ing of the n training patterns, the associated weight vector
W € R"”, and the vector Y € {—1,+1}" consisting of the
class labels, let 7, c = (X, W, Y, v, C) denote the result-
ing (trained) model. Accordingly, given two different sets
of features with induced pattern matrices X(p) and X(q) , the
individual models can be denoted by 7(;,) 4, and T4 .c>
respectively. For simplicity of writing, T ~.c = Tp)»
with v, C, being implicitly assumed.

The fusion procedure, for the general case with @) sets
of features, is described in Algorithm 1. It was shown
that AdaBoost with SVMs as component classifiers exhibits
a better performance for binary classification compared to
other approaches if the v = % parameter is iteratively in-
creased [25]. We have found that in case bootstrapping is
used instead of resorting to a single training set (as in [25]),
this request may be avoided as a unique value ~ suffices.

Algorithm 1 takes also inspiration from the principle of
so-called arcing classifiers [6], with the major difference
that instead of a full training set (i.e. all dimensions) we
only use parts of it (feature oriented). Furthermore, various



1. Initialize the observation weights
wh =1, ie{l,...,n}
2. Independently find the best parameters [15] for

Tikyme.cn = Ty given k € {1,...Q} ;
3. for m=1:M do

a. Randomly select a classifier 7},(m) with
p e {l...Q}. Alsoselect X(,;
b. Select a random bootstrap sample of the data;

c. Fit the chosen classifier 7,"™ to the training
data using weights W (™),
d. Compute the recognition error: ;

&)
d. Compute the update:

5 Em + log(K — 1),amax>
(6)

™) = min (log

e. Set

Wi w; - Ba(m) [Ci;ﬁ'rpfm)(xi)] (7)

end
Result: Boosted ensemble of partial SVMs given by:

M
C(X) = arg max Z o™ {7;(7") (X)) = k} (8)

m=1

Algorithm 1: Fused SVMs: [a; = b;] is the Iverson
bracket notation for the number of occurrences; K=18

(number of classes), amax = 10, 8 = 1.2 (so that
Blog(K—l) ~ 2).

solutions of SVM ensembles were previously introduced as
it can be followed in the review of Wang et al. [19] and more
recently in the work of Mayhua-Lopez et al. [32].

Among other details, we specifically differ by the sup-
plementary regularization as additional randomness when
we choose the next SVM for the overall ensemble. In fact
this choice departs the proposed solution from the tradi-
tional approaches of boosting [6, 31], where improvement
(i.e. next learner) is chosen as the steepest descent in the
function space; here it is randomly chosen. Compensatory
optimization is due to equation (5), where a large recog-
nition error shows that a some randomly selected learner
should not contribute much, thus will have less significance
in the overall classifier, as shown by equation (8).

Algorithm 1 requires that the individual SVMs yield a
reasonable performance; due to the RBF kernel, this implies

that good parameter assignments for both v and C have to
be found. An alternative would be to consider linear SVMs
(which require to optimize for C only), yet the potential de-
crease in performance is also transferred to the boosted en-
semble. In contrast, considering the RBF case we model the
parameters (y, C') by a Gaussian process (i.e. collection of
random variables that have a joint Gaussian distribution). In
this case, we follow by Bayesian optimization as described
in [15] so that to reach values close enough to the maximum
in, at most, 10 iterations. In our experimental evaluation,
this process led to the following approximate values for
(7, C) given two SVM models: (90 ~ 26:5:0.09 ~ 2735)
and (2.8 ~ 21°;0.5 ~ 271), respectively.

4. Paintings Database: Pandoral8k

One contribution of the work at hand is the collection of
a new and extensive dataset of art images.> The database
was formed in three steps: (1) collection, (2) image review,
and (3) art movement review. The first step took all works
from Table 1 into account (collection of images from the
web along with an art movement label). Wikiart was
used as a main source, but more than 25% was also col-
lected from other sources. We specifically tried to balance
the distribution among art movements.

The second step implied the manual review of all im-
ages. This was implemented by non-art experts and implied
cropping to remove the painting framework and to elimi-
nate images of sculptures or of 3D objects (often appearing
in modern art); here were altered (image and/or label) about
15% of instances. In the third step, the entire database was
reviewed by an art expert and all images that were consid-
ered to be “not artistic” were removed.

Following this review we note that: (i) There are works
labeled with some style, while the author is known for
his/her work for other styles; we have kept both. (ii) Multi-
ple labels given to a work are eliminated and only the dom-
inant one was kept. (iii) We try to replace parts of larger
painting (parts which are abundant on Internet) with the
full scale work. (iv) Modern art examples contain not only
paintings, but also digitized graphics.

In contrast, the recently used Wikiart collection [5,
20] is more exhaustive, but also suffers from weak anno-
tations. It contains images of sculptures, crops, images
with non-original frameworks and, in many cases, the works
have the style label of the movement to which their creator
is associated, although they are, for instance, simply book
illustrations. Due to these aspects, we consider it as being
less suitable for rigorous artistic movement recognition.

The editing process resulted in a set of 18,040 images
and 18 art movements in total, see Figure 1. The struc-

5The Pandoral8k database with precomputed features data re-
ported is available at http://imag.pub.ro/pandora/pandora_
download.html.



Art movement Img. Keydates Main characteristics [28]:

Byzantinism 847 500-1400 religious, aura
Early Renais. 752  1280-1450 ceremonial, divine, idealized
North. Renais. 821 1497-1550 detailed realism, tones, naturalism

High Renais. 832  1490-1527 rigor, antiquity, monumental, symmetry

Baroque 990 1590-1725 dramatic, allegory, emotion, strong colors, high contrast
Rococo 832  1650-1850 decorative, ludic, contemplative

Romanticism 895  1770-1880 rebellion, liberty emotion

Realism 1200 1880-1880 anti-bourgeois, real, social critique

Impressionism 1257  1860-1950 physical sensation, light effect, movement, intense colors, plein air
Post-Impress. 1276  1860-1925 meaningful forms, drawing, structure, strong edges
Expressionism 1027  1905-1925  strong colors, distortion, abstract, search

Symbolism 1057 1850-1900 emotion, anarchy, dream imagery

Fauvism 719  1905-1908 intense colors, simplified composition, flatness, unnatural
Cubism 1227 1907-1920 flat volumes, confusing perspective, angles, artificial

Surrealism 1072 1920-1940 irrational juxtaposition, subconscious, destruction

Abstract art* 1063 1910-now  geometric, simplified compositions

Naive art 1053  1890-1950 childlike simplicity, ethnographic, patterns, erroneous perspective
Pop art 1120  1950-1969 imagery from popular culture, irony

Table 2. Proposed database: The Abstract art class (*) encompasses Abstract Art (pure), Abstract expressionism, Constructivism, Neo-
plasticism and Suprematism.

Early Ren.

HHHUHH!

Fauvism Expressionism Cubism Abstract Naive art Pop art

Figure 1. The 18 art movements illustrated in the proposed database.

ture overview may be followed in Table 2. The difficulties of digitized images varies greatly, from high to low reso-
of automatic characterization are related to: (i) The quality lutions, further damaged by JPEG artifacts; (ii) The aspect



ratio varies from 3:1 to 1:3 and some paintings have a cir-
cular frame; (iii) More importantly, following the short de-
scriptions from Table 2, the main difference between var-
ious movements is subtle and more related to the content,
that is not easy to measure it by formal characteristics.

5. Results
5.1. Wikiart

Although in the previous section we argued why
Wikiart is less appropriate for art movement recognition,
we have evaluated the proposed system on this database as
well. The procedure is the same used by Karayev et al.
[20]: Binary randomly balanced classes with 20% of the
data as test set. The proposed algorithm (boosting SVM en-
sembles over pHoT and CSD) is detailed in Section 3, with
the sole modification that for SVMs the convergence crite-
rion is shrunk to 10~° from 107 to cope with fewer data
vs. higher dimensions. Overall, the proposed system ob-
tained an average accuracy of 82.41% compared to 81.35%
reported in [20] for the MC-bit variant as it was identified
the top performer. A per class comparison is available in
Figure 2.

5.2. Proposed Database

The remainder of the evaluation and discussions are re-
lated to the proposed database.

Training and Testing. To separate the database into train-
ing and testing parts, a 4-fold cross validation scheme was
implemented. The division into 4 folds exists at the level of
each art movement, thus each image is uniquely allocated
to a fold. The same division was used for all further tests
and it is part of the database annotations.

Features and Classifiers. As “there is no fixed rule that
determines what constitutes an art movement” and “the
artists associated with one movement may adhere to strict
guiding principles, whereas those who belong to another
may have little in common” [1], there cannot be a single
set of descriptors able to separate any two art movements.

Prior works [3, 21] noted that multiple categories of fea-
ture descriptors should be used. For instance, to differenti-
ate between impressionism and previous styles, one of the
main difference is the brush stroke, thus fexture; fauvism is
defined by the color palette. Yet following Table 2, mainly
the composition should be used.

To provide a baseline for further evaluation, we have
tested various combinations of popular feature extractors
and classification algorithms. The texture feature extrac-
tors used are: the previously mentioned HoT; HOG [9];
LPB [34]; LIOP [41]; Edge Histogram Descriptor (EHD)
and Homogenous Texture Descriptor (HTD = Gabor filters;

both are part of the MPEG-7) [30]; SIFT descriptor [29].
Initially, the features are computed on the equivalent gray-
scale image. The pyramidal versions implied four levels of
a Gaussian pyramid. For HOG, LIOP, LBP and SIFT imple-
mentations, we relied on the VIFeat library [40]. MPEG-7
descriptors are computed with BilVideo-7 library [4].

While the pyramidal texture features should be able
to describe the global composition, we also tested the
GIST [35] for the same purpose. For color descriptions,
we evaluated Discriminative Color Names (DCN) [22] and
CSD.

For the initial evaluation, we have coupled each of those
descriptors with two standard machine learning systems,
which have been previously found [13] to be the best per-
formers: support vector machines (using the LibSVM im-
plementation [7]) and random forests (RF). For these tests,
the SVM-RBF implied hyperparameter optimization, while
the Random Forest contained 100 trees and v/d features
were tested per internal node split.

The results do not contain any mid-level description;
similar works on the topic showed that for the particular
case of paintings, these do not help [5, 21]. We tested Fisher
Vector over SIFT and the combination SIFT+FV+SVM lead
to an overall decrease in performance with 1% compared to
SIFT+SVM.

Systems. Noting the recent advances of deep networks,
we have tested several alternatives and the results are pre-
sented in Table 4.° For LeNet and NiN, we used the Mat-
ConvNet library, while for AlexNet and ResNet, we re-
sorted to the CNTK library. In all these cases, the mean
was subtracted and image intensity was rescaled to [0,1].
We tested various image augmentations such as centering,
cropping, and warping; warping to 224 x 224 gave the best
performance, and we only report the corresponding results.

Given the results of the individual features, we have
tested various alternatives to fuse the results; these are
shown in Table 5. Following previous works on art move-
ment recognition [5, 20, 36], convolutional filters from the
Caffe version of the AlexNet trained on ImageNet were
applied on the database and results are marked with De-
CAF [11] and the layer subscript. Also, given the results
from [36], we tried to use layers of the DeCAF filters in the
boosting procedure.

Duration. The proposed system was implemented in
Matlab with C code for feature extraction and the use of
LibSVM. The feature independent SVM-RBF hyperparam-
eter optimization was carried out in parallel, otherwise the

%The convolutional neural network (CNN) performance is taken after
40 epochs for LeNet and NiN and after 100 iterations for AlexNet and
ResNet. ResNet reaches 49.1 accuracy in the course of the training process.
More epochs (up to 500) did not improve the performance.
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Figure 2. Results and comparison with [20] on the Wikiart database.

HOG pHoG colHo G HoT pHoT LBP pLBP SIFT LIOP HTD EHD GIST DCN CSD pLBP+CSD pHoT+CSD

RF 184 234 19.6 29.6 323 272 327 216
SVM 174 247 19.1 308 425 274 392 236

244 223 249 238 189 313 37.8 377
252 197 227 235 194 338 404 47.1

Table 3. Recognition rates (%) for various features and classifiers (Proposed database)

Deep CNN

Type Size Layers Time RR
LeNet [24] - Rand 32 14 <1lh 223
LeNet [24] - Rand 64 16 <1h 25.1

NiN [26] - Rand 64 17 <1lh 265
AlexNet [23] - Rand 224 8 <1lh 395
AlexNet [23] - FT-3 224 8 2h 395

AlexNet [23] - FT-4 224 8 60h  56.5
ResNet-34 [18] - Rand 224 34 2h 47.8

Table 4. Recognition rates (RR) for various CNN models (size
refers to the width and height of the input images; Layers to the
number of layers). Rand refers to the case when initialization was
from scratch, while F'I" — N refers to a pre-trained ImageNet in-
stance with only the top N layers being retrained.

code ran, unoptimized, on a single core Xeon E3-1280 in
~ 100 minutes. The use of small in-bag sets and Bayes
optimization instead of full search for (v, C') allowed con-
siderable acceleration. Reported time for the CNNs implied
acceleration on Nvidia 980 Ti GPU. In all cases, testing re-
quires up to 2 seconds per image.

6. Discussion

Features and Classifiers. Table 3 indicates that predom-
inantly, SVM outperforms RF for the classification task.
Typically SVMs perform well in high-dimensional feature
spaces (where each feature is not “powerful”, but the com-

Features + Classifier
Classifier Time RR

Features

DeCAFg SVM lh 428

DeCAF;5 SVM lh 417
All RF 6h 445
All+PCA RF 3h 385
All SVM lh  50.0

pHoT+CSD SVM 2h  47.1

DeCAFg Boost 2h 49.4
DeCAF 4 Boost 2h 44.6
pHoT+CSD Boost 2.5h  50.1
All Boost 6.5h 48.5

Table 5. Recognition rates for a subset of the features/classifiers
reported in Table 3. Here, A/l refers to all features listed in Table 3.
For each approach, the training time is reported for a given fold.
The proposed method is denoted by Boost.

bination is). RFs perform well given single powerful fea-
tures. Tested features are essentially histograms and the in-
formation carried by a single bin is not relevant, while the
unbalance in the entire distribution is. Regarding the fea-
tures, the texture category is dominated by HoT and LBP,
with a slight edge for the first. In the color category, the
CSD clearly reaches top accuracy.

With respect to the proposed boosted fusion method, one
particular aspect that we found to be critical in achieving
greater accuracy is the random choosing (Algorithm 1, 3.a)
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Figure 3. Accuracy while the system iterates. Using only the best classifier (HoT, blue solid line), the overall performance saturates early.
Using both (segmented line), the increase is initially due to the strong classifier, while the weak one contributes positively only later.

of a classifier. The alternative is choosing the best classi-
fier (according to the steepest descent w.r.t. a loss function
[31]); yet this path, while initially yields steeper increase
(see Figure 3), it also reaches the stationary point earlier.
Also, choosing the best implies to train and test all classi-
fiers at all steps to get the maximum, which adds consider-
ably computational burden. Choosing the involved classi-
fier randomly leads works if the base learners complements
each other, which is achieved by using complementary fea-
tures.

Comparisons. The numerical comparison with CNN
shows that the proposed method exhibits a better accuracy
in a comparable runtime. Yet we note that CNNs make ex-
tensive use of GPU acceleration, while the proposed method
does not. Thus we may hope that further acceleration is
reachable. Lower relative performance for CNN can be
linked to the lack of repeatable objects into paintings; dif-
ferences between various art movements are more subtle (as
emphasized in Table 2).

Also another liability of the CNNss in the current evalua-
tion is the limited size of the database. Wikiart, ArtUK
and other Internet sources potentially contain significant
supplementary data, but this needs to be further validated
by art experts before being used with significant confidence.
Alternatively pre-trained CNNs, that are fine-tuned on this
database over many iterations outperform the proposed so-
lution (as shown in table 4). Although, in such a case, the
computational requirements are also significantly higher.

Using all the features with a simple SVM yields com-
parable results. Yet, this implies the computation of all
features, which takes considerable more time than reported
solely for training in Table 5. For this reason also, we opt to
use only two types of features.

Art Movement Recognition. The resulting confusion
matrix’ is shown in Figure 4. The system recognizes very

7 Additional results are presented in the supplementary material.

Byzant

Early Ren.
North Ren.
High Ren.
Baroque
Rococo
Romant.
Realism.
Impress.
Post-Imp.
Symbol.
Express.
Fauvism

Cubism

Figure 4. Confusion matrix (recognition rates)

accurately older movements like Byzantinism or High Re-
naissance and heavily confuses more modern ones. Worst
recognition rates are for Expressionism (22.8%), Symbol-
ism and Fauvism. Confusion is between older movements
and, separately, between newer ones. There are no two
classes being completely interfused.
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