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Abstract - This paper presents an open-system approach to 
color texture recognition and retrieval. Several new compact 
texture descriptors are used in order to achieve a good 
recognition and retrieval performance. The IRIS system is an 
easy-to-use, user-friendly Matlab toolbox, which allows the user 
to browse image databases according to different paradigms. 
 
Indexing terms - color texture description, color image retrieval, 
ornamental stones description, retrieval toolbox 
 

I. INTRODUCTION 
 

The growing demand for fast and accurate access and 
information retrieval has extended to visual information as 
well. The multimedia revolution of the last years imposed 
ever more demanding image handling requirements, in 
displaying, storing, searching and analyzing visual 
information. The Internet and the World Wide Web are 
certainly part of this evolution. The recent emphasis on image 
retrieval systems, by visual and content similarity, strongly 
illustrates the need for the development of effective image 
description schemes. In the context of retrieval, the descriptor 
is used to search in a database for images that are similar to 
the given image. Image description involves extracting 
relevant features from images within the database, such that a 
mathematically computed distance between feature vectors 
corresponds to the visual distance (or visual similarity) 
between the images. The main goal of an image description 
scheme is to provide a compact feature vector, embedding 
most of the visual cues characterizing the image: color, 
texture, and structure. 

 
The remainder of the paper is organized as follows: 

section II presents the basic principles of the image content 
description for indexing systems, section III presents the new 
color texture descriptors used by the IRIS system and section 
IV briefly presents the structure of the IRIS system. The 
description of color texture recognition and indexing 
experiments (section V) and some concluding remarks 
(section VI) end the paper. 

 
II. COLOR AND TEXTURE DESCRIPTION FOR IMAGE 

RETRIEVAL 
 

Most of the generalist content-based image retrieval 
systems consider the color image description according to a 
color-texture-shape scheme. The color attributes (color 
moments, color distributions, color saturation, color balance) 

reflect the overall perception of the image, which, according 
to a recent study by Mojsilovic et al [9], [8] is the most 
important human classification criterion. The texture 
description, which still does not have a rigorous definition, 
translates linguistic terms, such as coarseness, roughness, 
regularity, directionality, and contrast. The shape description 
reveals either the global distribution of structural features 
(such as edge strength and orientation, corners and other 
shape primitives), either specific shape descriptors, following 
a segmentation or region-of-interest identification procedure. 
We consider that shape information can be partially covered 
by a proper texture description and partially reflects very 
specific domain-oriented knowledge. 
 
A. Color description 
 

Beginning with the works of Swain and Ballard [16], the 
first order statistical distribution of colors (color histogram) 
became the most intensively used tool for image content 
characterization. The alternative use of the associated 
cumulative distribution function [14] proved to perform 
better with respect to small color variations. Even simpler 
and more compact, the statistical moment description of the 
image content summarizes the image description by a few, 
marginal central moments (dispersion, kurtosis, mean) either 
of the color distribution, as proposed in [14], [9], or of the 
chromaticity distribution [11]. Other works [1] are based on 
the compression of the color (or chromaticity) distribution by 
a partial (via the cosine transform) or total decorrelation (via 
the principal component analysis). Still, it appeared very 
early that the first-order distributions and their associated 
moments have some intrinsic limitations, since they cannot 
account any spatial information about the colors (see for 
instance the basic examples presented in [5]). The use of 
color description techniques implies the prior choice of a 
color space representation and of a color quantization 
procedure [2]. 
 

The color space representation is chosen according to one 
of the three usual color paradigms: 

- RGB or luminance and two differential chromatic 
components (linearly transformed RGB, which includes the 
biologically motivated opponent color representation and the 
PCA-based representation of Ohta), 

- the uniform chromaticity color space Lab or Luv (which 
provides an inter-color distance that matches the visual 
perception), and 



- the perceptual representation (hue, saturation, value) 
HSV and its many variants (as presented for 
instance in [2]).  

 
The color quantization can be fixed (some basic colors 

that "are never confused"), uniform (each color component 
being independently uniform quantized, not necessarily with 
the same number of quantization levels) or adaptive (images 
with color tables). 
 
B. Basic texture description 
 

Texture still lacks a specific, rigorous definition. It can be 
described either as a mostly regular spatial replication of a 
basis pattern (the "texon" or "texel"), or as an irregular, or 
random distribution of pixel values. According to the chosen 
model (deterministic or stochastic), the texture attributes 
derive from the computation of characteristic visual cues 
(periodicity, orientation, principal axes, symmetry axes) or 
from the probability density functions of the pixel values, or 
spectral energies (or many other statistical based models). 
 

The most commonly used spatial measure for texture 
discrimination is the co-occurrence matrix, which describes 
spatial relationships between gray levels in a texture. Some 
texture features, such as energy, entropy, contrast, 
homogeneity, tendency to clustering can be computed 
starting from the co-occurrence matrix, as proposed by 
Haralick [4]. Similar textural measures, such as contrast, 
coarseness and directionality, were used for texture 
discrimination in the QBIC system [10]. 
 

Another idea is to compute the power spectrum of the 
texture image, by a Fourier transform. Energies within 
different sub-masks (concentrical, diadically -spaced disks, or 
circular sectors) form a vector based on which textures are 
discriminated. Other possible approach is to compute a so 
called "texture signature"; Randen and Husoy [13] proposed 
to compute several "energy images" by convoluting the 
textured image with different filtering kernels. Thus, a pixe l 
is characterized by a vector, which represents the textural 
neighborhood energies. Another idea is to determine a 
stochastic model that could be used to generate a given 
texture. Then, the texture similarity is assessed by comparing 
the parameters of the corresponding models (2-D auto-
regressive processes or Markov random fields). 
 
C. Feature and shape description 
 

Important visual cues, such as corners and contours can 
be taken into account, either explicitly, or implicitly. Edge 
orientation distributions, edge strength distributions and edge 
length distributions are used in conjunction with color 
descriptors for a robust retrieval performance in generalist 
image databases, as presented in [2]. Edge strength is used 
implicitly in the so-called histogram refinement techniques, 

such as the Color Coherence Vectors (CCV), introduced by 
Pass and Zabih [12]. A coherent pixel is defined by the color 
uniformity of its neighborhood, whereas the contour pixel is 
located close to the separation lines between the image 
objects and thus it is characterized by a non-uniform 
neighborhood. The CCV is thus a separate counting of 
contour and coherent pixels, into two color distributions 
(histograms). 
 

Finding significant image parts is an ill-posed problem 
and relates to image segmentation. Image partitioning can 
provide the advantage of a refined query, but, usually, this 
implies a computational overload. Using the entire image as a 
query region is the simplest approach. Shape parameters are 
not very relevant since they can express only the aspect ratio 
of the pixel matrix. A somehow improved approach is to 
consider an image pyramid - the entire image at various 
resolutions (constructed by Gaussian or wavelet smoothing) - 
as a means to integrate the distance-related visual perception 
effects. Since most of the visual information perceived by the 
viewer is concentrated in the center of the images, Stricker 
and Dimai [15] proposed to decompose each image into one 
elliptical region, corresponding to the center and four corner 
regions (with some fuzzy superposition between them). Other 
approaches consider a grid decomposition of the image into 
rectangular-shaped, resolution-dependent-sized regions. Each 
region can be used as an individual query item, providing 
thus the means of a partial query, as proposed by Malki, 
Boujemaa, Nastar and Winter [7]. 
 

III. COMPACT COLOR-TEXTURE DESCRIPTION 
 

A classical texture description scheme is based on the use 
of the run-length matrix. A run-length, as defined in [3], [6], 
is a connected set of pixels, having the same scalar or vector 
value, and oriented according to a given direction θ. The run-
length matrix Mθ accounts, for a specific image region, the 
number of run-lengths having all possible lengths (from one 
to the size of the image region according to the direction θ, 
nθ) and values (according to the quantization used for the 
image values). Thus, Mθ(a,b) represents the number of sets of 
b successive, a-valued, connected pixels, oriented according 
to the direction θ. Several directions θ can be simultaneously 
used for describing an image region; usually the horizontal, 
vertical and the two main diagonals are used. In the case of 
rather isotropic textures (such as the colored ornamental 
stones), the horizontal and vertical directions provide a 
sufficient description precision. The run-length matrix is not 
directly used for texture description, but some statistical 
parameters are computed on the basis of the Mθ(a,b). We 
proved elsewhere [17] that the classical parameters derived 
from the run-length matrix do not comply with the color 
texture description principles [9] and we have proposed an 
alternative description, based on the informational entropy of 
the joint run-length value and length distribution. 



Moreover, the value distribution (color or gray-levels 
histogram) of the basic units composing the image (pixels or 
run-lengths) can be viewed as being modified by the spatial 
constraint of pixel connectivity that defines the run-length 
[17]. Thus, the process of formation of the run-length can be 
interpreted as the deformation of the initial image values 
distribution (measured by the image region histogram) into 
the marginal distribution of the run-lengths values. The 
difference between the two distributions can be measured 
according to several principles; the set of deformation 
measures can be considered as a feature vector for the run-
length value distribution. 
 
The entropy deformation measures constrained by the run-
lengths are relevant for the textural content of the image. The 
color content must be described separately. We used the 
weighted-histogram approach [18]. The weighted histogram 
refines further the approach proposed by the CCV [12] by the 
partitioning of the image pixels in more than two classes, 
according to a local attribute (such as the edge strength, or 
the color importance degree). In order to keep the balance 
between the histogram size and the discrimination between 
pixels we propose to adaptively weight the contribution of 
each pixel of the image into the color distribution. This 
individual weighting allows a finer distinction between pixels 
having the same color and the construction of a weighted 
histogram that accounts both color distribution and statistical 
non-uniformity measures. 
 

IV. THE IRIS SYSTEM 
 

IRIS (Image Retrieval and Indexing System) is a 
prototype software toolbox for image database browsing and 
management. The IRIS system consists of a Matlab function 
set, which allow querying image databases according to 
image query examples, in order to retrieve images that are 
visually similar to the query. The query image can be internal 
or external to the indexed image database and is considered 
as a global query. 

 
Like most indexing systems, IRIS performs the indexing 

of the database off-line, computing the content descriptor 
vectors for all the images within the specified image 
database. The image content descriptors are stored into an 
Image Database Descriptor (IDD) file, in a simple matrix 
form and linked to an Image Database Content (IDC) file, 
which lists the image filenames and locations. The image 
content descriptor vectors can be also stored as an expansion 
according to their principal components, by a Principal 
Component Analysis (PCA) or Karhunen-Loeve 
decomposition. The image content description vectors is thus 
computed on-line only for external image queries. The 
similarity between images is inferred according to the simple 
Euclidian (L2) distance between the corresponding image 
content description vectors. The query results are ranked 
according to their distance to the query image. 

The graphical user interface of the IRIS system (see 
figure 1) is an image database browsing tool, which allows 
the user to visualize the content of a selected image database 
according to some pre-defined orders: the usual IDC-file 
order (alphabetical order of image filenames), a randomized 
selection order (a shuffle of the previous order) and the 
query-induced similarity order. All the aforementioned 
browsing types produce a linear image plot (see figure 4). If 
the PCA decomposition of the image descriptor vectors is 
used, the retrieval results can be visualized also in a two-
dimensional image scatter-plot (figure 3), allowing a better 
understanding of the similarity relations between the images. 
 

 
Fig. 1: Command window (at left) and image database 
browsing window of the IRIS system. 
 

V. EXPERIMENTS 
 

The main test database (Ornament) consists of 140 classes 
of colored ornamental stones (marble, granite, travertine and 
limestone), taken from the web site of Marble and Granite, 
Inc. (http://www.marbleandgranite.com). From each original 
image we randomly cropped ten 128 by 128 sub-images, that 
form its corresponding class, for a total of 1400 images. We 
equally used the generalist color texture database (Textures), 
consisting of 100 classes of nine 128 by 128 images of 
various natural and artificial, regular and irregular textures, 
for a total of 900 images (part of this database is taken from 
the well-known MIT Vistex texture database 
(http://www.media.mit.edu/vismod). 
 

We evaluate the quantitative, objective retrieval 
performance of the proposed descriptors by the classical 
precision-recall curves. The precision is the percent of 
correctly retrieved images within the total number of 
retrieved images. The recall is the percent of correctly 
retrieved images with respect to the total number of relevant 
images within the database. The precision-recall curve plots 
the precision for all the recall rates that can be obtained 
according to the current image class population (C=9 for the 
Textures image database and C=10 for the Ornament image 
database), from 1/C to 1, in steps of 1/C. As shown in figure 



2, the proposed description scheme provides an excellent 
indexing performance. 
 

 
Fig. 2: Precision-recall curve for the retrieval performance within 
the Ornament image database for the proposed compact color 
texture descriptors (continuous line) compared to the indexing 
according to color alone (circle-marked line) and color and classical 
texture descriptors (star-marked line). 
 

The recognition performance is  measured by the average 
recognition ratio (for all images within the database) 
according to a 1-, 3-, 5- and 7- nearest neighbor (NN) 
technique. Table 1 presents the recognition rates for the two 
used databases (Ornament and Textures). Figures 5 and 6 
present retrieval results for different queries with image 
examples that are external to the indexed image database. 
 

Database Recognition rate [%] 
 1-NN 3-NN 5-NN 7-NN 
Ornament 97.00 93.43 89.86 85.64 
Textures 90.11 85.89 80.78 75.44 

 
VI. CONCLUSIONS 

 
This paper presented an open system for image indexing and 
retrieval based by a set of interactive, easy-to-use Matlab 
functions. The system was aimed to primarily manage color 
texture image databases, by embedding compact color texture 
descriptors. Such descriptors are the entropy-based 
parameters computed from the run-length matrix and the 
deformation measures within the original, spatially 
unconstrained color distribution and the run-length 
constrained color distribution, extended with edge-strength 
weighted color histograms.  
 
The proposed approach is more effective (in terms of 
descriptor size and retrieval/ recognition performance) than 
most classical color texture descriptors. We thus claim that 
the proposed compact color texture descriptor is a very good 
solution for effective, computationally inexpensive 

recognition and retrieval of color texture images. The test and 
experiments were focused on the management, match and 
control of ornamental stone images. 
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Fig. 3: Two-dimensional image scatter-plot of images within the database, according to the similarity relations between the 

images and the image at the center. The distances within the image locations are proportional to the image similarity. 

 
Fig. 4:  Image database browsing according to the visual similarity with respect to the top-left image; the visualization effect is 

poorer as in the two-dimensional similarity visualization from figure 3. 



 

 
Fig. 5: External query by the image at the left (rosso levanto marble from Ankur Intl. Inc) and retrieved images from the 

Ornament image database (rojolevanto, brecianouvella , and marronbrown marbles from Marble and Granite Inc.). 
 
 

 
Fig. 6: External query by the image at the left (gray granite from the Pau School of Mines, France) and retrieved images from 

the Ornament image database (tropicalgreenred , paradiso , and rainbow granites from Marble and Granite Inc.). 
 

 
 
 
 
 


