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ABSTRACT

In video global features are often used for reasons of compu-
tational efficiency, where each global feature captures infor-
mation of a single video frame. But frames in video change
over time, so an important question is: how can we mean-
ingfully aggregate frame-based features in order to preserve
the variation in time? In this paper we propose to use the
Fisher Kernel to capture variation in time in video. While
in this approach the temporal order is lost, it captures both
subtle variation in time such as the ones caused by a moving
bicycle and drastic variations in time such as the changing
of shots in a documentary.

Our work should not be confused with a Bag of Local Vi-
sual Features approach, where one captures the visual varia-
tion of local features in both time and space indiscriminately.
Instead, each feature measures a complete frame hence we
capture variation in time only.

We show that our framework is highly general, reporting
improvements using frame-based visual features, body-part
features, and audio features on three diverse datasets: We
obtain state-of-the-art results on the UCF50 human action
dataset and improve the state-of-the-art on the MediaEval
2012 video-genre benchmark and on the ADL daily activity
recognition dataset.

Categories and Subject Descriptors

I.4.8 [Scene Analysis]: Time-varying imagery
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1. INTRODUCTION
In video retrieval, an important research problem is how

to adequately capture temporal information. Until recently,
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most video retrieval systems relied mostly on single repre-
sentative video frames where time is ignored for efficiency
reasons [24]. Recent work simply accumulates features over
a whole video sequence [4, 8, 22]. Such accumulation may
capture more information, but also mixes information, disre-
garding appearance variation over time. For example, when
a car approaches and then turns a corner, there are first
straight movements followed by turning movements. It is
important that both types of movement do not happen at
the same time. We want to have a representation which
keeps this distinction.

In this paper we propose a novel video representation
method which aggregates frame-based features while retain-
ing their variation in time. Specifically, we propose to use
the Fisher representation [15] which was recently introduced
for improving a Bag of Local Visual Features approach [2].
Bag of Local Visual Features captures the visual variation in
space for images and in both space and time for video. The
Fisher Kernel improves over the common k-means vocab-
ulary by modelling the distribution of features within each
visual word. In contrast to Local Visual Features, in this pa-
per we apply the Fisher representation on frame-based fea-
tures, effectively capturing variation in time only (as there
is no variation in space). Like Bag of Local Visual Features,
all ordering is lost but all variation is captured. Using the
Fisher representation for modelling variation in time, (1)
dissimilar frames will be represented by different mixture
components (i.e. clusters), preventing blending of unrelated
features while enabling them to co-exist in a single repre-
sentation. This enables representing videos which consist
of dissimilar parts (which may not even have a fixed tem-
poral order) such as news broadcasts that switch between
the news-anchor and on-site footage. Furthermore, (2) sim-
ilar frames that fall in the same mixture component will
be modelled with respect to the general distribution of that
component, capturing subtle variations in time such as the
different appearances of a person walking by.

We test our Fisher-based framework for modelling vari-
ation in time on a variety of video benchmarks: genre re-
trieval on the MediaEval benchmark [21], Human Action
Recognition on the UCL50 dataset [17], and daily activ-
ity recognition on ADL [14]. Additionally, we employ a
variety of frame-based features: global Histogram of Ori-
ented Gradients (HoG) [3], global Histogram of Optical Flow
(HoF) [17], global Colour Naming histogram (CN) [28], HoF-



based body-part histogram [18], and even on block-based
audio features [13]. We show that the Fisher representation
consistently and significantly outperforms simple accumula-
tion. Additionally, by explicitly modelling the variation in
time we obtain state-of-the-art results or better on all three
datasets using a smaller array of simpler features.

To summarise, our main contributions are the following:
(1) We introduce a Fisher-based representation for frame-
based features in video that captures variation in time. (2)
We demonstrate its generality in terms of applications by ap-
plying it to genre-recognition, sports-recognition, and daily
activity recognition. (3) We demonstrate its generality in
terms of features by using audio features, global visual fea-
tures, and body-part features. (4) We achieve similar or
better performance than the state-of-the-art using a smaller
array of simpler features.

2. RELATEDWORK
Recently, researchers have successfully captured local tem-

poral information in video by using spatio-temporal features,
visual features that are measured in the 3D volume spanned
by the video frames. These features are extracted either at
interest points which are stable in both space and time [4, 5,
8, 10, 27], or at stable trajectories [29]. The specific move-
ment pattern captured by these features yields significant
improvements over 2D features. However, these features are
accumulated over an entire video sequence ignoring the vi-
sual variation at different parts of the video.

Some works include some form of variation in time by
using a linear quantization of the video: the video is split
into n sequences of an equal number of frames, where for
each sequence all features are accumulated [1, 10, 19, 29].
Histograms of the individual sequences are concatenated,
leading to good accuracy improvements. In [26] the authors
use a linear quantization method for global features, where
the features are averaged inside a sequence.

Few works focus directly on modelling the temporal or-
der/variation between frames [24]. There is some work on
using Hidden Markov Models [9, 16]. Other work uses tem-
poral rules with high-level concepts [12, 25].

3. MODELLING VARIATION IN TIME
The Fisher Kernel [7] represents a signal as the gradi-

ent with respect to the probability density function that is a
learned generative model of that signal. Recently, [15] intro-
duced the Fisher Kernel as an improved visual vocabulary
for Bag-of-Words. Its success shows that it meaningfully
captures the visual variation of local descriptors.

In this paper we employ the Fisher Kernel to capture vari-
ation in time in video. We follow [15] and use a Gaussian
Mixture Model with diagonal covariance matrices as genera-
tive distribution. Specifically, let µi and σi be the mean and
standard deviation of the i-th Gaussian centroid, let γ(i) be
the soft assignment to the i-th Gaussian of the d-dimensional
feature xt captured at frame t. The gradient of the GMM
with respect to µi and σi are calculated as [15]:
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The final Fisher vector is the concatenation of the Gx
µ,i and

Gx
σ,i for i = 1...k and has a dimensionality of 2kd.
Interpreting the formulas in terms of variation in time,

Equation 1 averages related features over time, which are
related as they fall in the same mixture component. Equa-
tion 2 models the variation of related features over the video
sequence, capturing subtle visual changes (e.g. a car driv-
ing by). The different mixture components capture drastic
variations in time such as a shot changes.

Important parameters or design choices are: (1) Apply-
ing PCA on initial features xt, reducing dimensions of the
final Fisher vector and potentially improving GMM cluster-
ing by decorrelation. (2) The number of GMM clusters. (3)
Normalization of the Fisher vector. (4) Choice of classifier.

4. EXPERIMENTS
We demonstrate the advantages and generality of our frame-

work on three different datasets using a variety of features.
For brevity reasons we will mainly focus on the number of
GMM clusters and only touch upon applying PCA. We nor-
malise the Fisher vector by taking the square root followed
by the L2-norm [15]. In contrast to [15], we use SVMs with
RBF-kernels as these performed better than linear SVMs,
even at an increased number of clusters for the latter. When
combining different types of features we use weighted late
fusion, learning weights on our optimization sets.

4.1 Genre Retrieval
We perform genre retrieval on the 2012 MediaEval Genre

Tagging Task [21], consisting of 2000 hours in 14,838 videos,
labelled according to 26 genres such as art, autos, and com-
edy. Performance is measured in terms of Mean Average
Precision (MAP). We perform all parameter optimization
on the training set which we split in two fixed, equally sized
parts. We compare with the state-of-the-art using the offi-
cial training set (5,288 videos) and test set (9,550 videos).

Baseline. We use the following features: (1) Global His-
togram of Oriented Gradients [3] (81 dimensions) which cal-
culates HoG over the whole frame using a 3x3 spatial divi-
sion. (2) Colour Naming histogram [28] (11 dimensions)
of the whole frame. (3) Audio features [13] (98 dimensions)
which are general purpose audio descriptors extracted over a
standard period of 1.28 seconds around the frame using [13].
Results of averaging features over the whole video are pre-
sented as the horizontal lines in Figure 1.

Optimizing the Fisher Representation. We ran ex-
periments with PCA dimensionality reduction on the frame-
based features, setting the number of cluster centres to 100.
We found that for Colour Naming, applying PCA reduces
performance. This is because the dimensions are decorre-
lated and non-redundant by design [28]. For HoG and Audio
features the optimal reduction is to keep 80% of the dimen-
sionality, where for HoG accuracy increased a full 5%. We
choose these PCA settings for subsequent experiments.

Next, we determine the optimal number of clusters for
each feature as shown in Figure 1. First of all, notice the big
improvements of the Fisher representation over the baseline
which simply averages the features: Even when using only a
single (!) centroid, Colour Naming goes up from 0.18 MAP
to 0.28 MAP, HoG goes up from 0.22 MAP to 0.38 MAP, and
Audio goes up from 0.34 MAP to 0.45 MAP. The modelling
of variation in time therefore significantly improves results.
Increasing the number of clusters increases performance even
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Figure 1: Mean Average Precision (MAP)
while varying the number of cluster centres
on the MediaEval 2012 training set.
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Figure 2: Classification accuracy on half of
UCF50 sports while varying the number of
cluster centres (8-fold cross-validation).
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Figure 3: Classification accuracy on ADL
daily activity recognition on half the dataset
while varying the number of cluster centres.

further: Both Colour Naming and HoG increase an extra
0.05 MAP, reaching 0.33 MAP and 0.43 MAP at 800 clusters
and 200 clusters respectively. Audio features increase to 0.47
MAP at 50 clusters. We will use this number of clusters in
the next experiment. The final sizes of the Fisher vectors
are reasonable at 17,600 for Colour Naming, 42,000 for HoG,
and 9,000 for Audio features. Note that performance of both
HoG and Audio features go down after the optimal points,
likely due to the high dimensionality of the features (i.e.
curse of dimensionality).

Comparison to State-of-the-Art. Results on Media-
Eval 2012 are shown in Table 1. For audio features our
results are at 0.47 MAP much better than the best result
of 0.19 reported at the MediaEval workshop [6]. For visual
features only, at 0.46 MAP we perform significantly better
than the best result of 0.35 MAP [23]. Remarkably, our
combination of audio and visual features yields with 0.55
MAP a better performance than the use of text from au-
tomatic speech recognition and meta-data, which had the
highest performance at MediaEval 2012 at 0.53 MAP.

To conclude, using the Fisher kernel to model variation in
time significantly improves over a simple averaging of fea-
tures, yielding much better results than the state-of-the-art
on the MediaEval 2012 benchmark.

4.2 Human Action Recognition
We now evaluate our framework on the UCF50 Human

Action Recognition dataset [17], which contains 6600 realis-
tic videos from Youtube with large variations in camera mo-
tion, object appearance and pose, illumination conditions,
scale, etc. It has 50 mutual exclusive categories such as bik-
ing, diving, drumming and fencing. Performance is evalu-
ated in terms of classification accuracy. We perform all opti-
mization on half of the dataset, using 8-fold cross-validation.
We compare with the state-of-the-art using the standard
leave-one-group-out cross-validation on the full dataset [17].

Baseline. We use the following features: (1) Global His-
togram of Oriented Gradients [3] (9, 36, 81, and 144 dimen-
sions) which calculates HoG over the whole frame using a
1x1, 2x2, 3x3, and 4x4 spatial division. (2) Global Histogram
of Optical Flow [17] (9, 36, 81, and 144 dimensions) which
measures the average velocity of non-stationary pixels over
a region in 9 orientations. We use a 1x1, 2x2, 3x3, and 4x4
spatial division. (3) Colour Naming Histogram [28] (11, 44,
99, and 176 dimensions) using a 1x1, 2x2, 3x3, and 4x4
spatial division. In all experiments, we combine different
spatial divisions for a single feature type using late fusion

with equal weights. Results of averaging each feature over
the whole video are shown as horizontal lines in Figure 2.

Optimizing the Fisher Representation. We first op-
timized the dimension reduction using PCA. We found that
both the Colour Naming histogram and the Histogram of
Optical Flow did not benefit. For HoG we found a good im-
provement by reducing dimensions to 90% (data not shown).

Next, in Figure 2 we evaluate the performance with re-
spect to the number of GMM clusters, where we use the
same number of clusters for all spatial divisions of a single
feature type. For Colour Naming and HoG the use of a single
cluster improves the baseline with 6% and 5% respectively.
More clusters degrade performance as for this dataset the vi-
sual changes are subtle and do not require different mixture
components. For HoF, using 50 clusters improves the base-
line of 54% to 67%, a 13% improvement. Hence the optical
flow changes drastically in time which is best captured in
multiple clusters. Indeed, for example a baseball pitch has
at least three distinct movement patterns: static (before the
action), the pitch, and the batting. In the next experiment
we use 1 cluster for CN and HoG, and 50 clusters for HoF.

Comparison to State-of-the-Art. We present the state-
of-the-art in Table 2. As can be seen, we rank second with
74.7% accuracy after the 76.9% accuracy of Reddy et al. [17].
However, we use only global features whereas all other good
performing methods use computationally more expensive
Space-Time Interest Points (STIPs). Only the GIST3D en-
try of [8] does not use STIPs. They use global, frame-based
features plus linear quantization. Our performance using
the Fisher vector is a significant 9.4% higher.

We conclude that our framework yields similar perfor-
mance as the state-of-the-art while using simpler features.

4.3 Daily Activities
We report results on daily activity recognition using the

ADL dataset [14], consisting of ten human activities such
as dialling a phone, peeling banana, and chopping banana.
Each activity is performed three times by five people, to-
talling 150 videos. Performance is measured in accuracy.
We do all optimization on half of the dataset and report
final results on the full dataset. In both cases we use leave-
one-person-out cross-validation [14].

Baseline. As human pose and body-part motion are im-
portant for distinguishing the different categories, we extract
body-part features [18]. We use the state-of-the-art body-
part detector of [31] and extract at every frame for all 18
body-parts a Histogram of Optical Flow in 8 orientations



Table 1: Comparison with State-of-the-Art (SoA) in terms of
Mean Average Precision (MAP) on MediaEval 2012.

Feature type Summary SoA method
MediaEval 2012

MAP
SoA

MAP
ours

Audio Block Based Audio Fea-
tures and 5-NN [6]

0.192 0.475

Visual Visual descriptors (Color,
Texture, rgbSIFT) [23]

0.350 0.460

Audio & Visual - - 0.550
Metadata &
Text ASR

BoW Text ASR & meta-
data [20]

0.523 -

Table 2: Comparison with State-of-the-art
on UCF50 Human Action Recognition.

Method Accuracy

Reddy et al. [17] 76.9%
This paper 74.7%

Solmaz et al. [26] 73.7%
Everts et al. [5] 72.9%
Kliper-Gross et al. [8] 72.6%
Solmaz et al. [26]: GIST3D 65.3%

Table 3: Comparison with state-of-
the-art on the ADL Daily Activity
Recognition dataset.

Method Accuracy

This paper 97.3%

Wang et al. [30] 96.0%
Lin et al. [11] 95.0%
Messing et al. [14] 89.0%

(144 dimensions). The result of averaging this feature over
the video is shown as the horizontal line in Figure 3.

Optimizing the Fisher Representation. We found no
improvements by doing PCA on the bodypart HoF features.

Figure 3 shows accuracy with respect to the number of
GMM clusters. Using only a single cluster yields a perfor-
mance improvement from 77% to 82% accuracy. The best
accuracy of 88% is obtained using 17 clusters. Note that the
number of clusters is relatively low, likely due to the smaller
dataset. At 17 clusters, the final feature has 4,896 dimen-
sions. We use 17 clusters when testing on the full dataset.

Comparison to State-of-the-Art. We compare our
work with others in Table 3. As can be seen, our approach
yields the highest accuracy of 97.3%. This shows that the
Fisher representation is also effective for modelling variation
in time using local body-part features.

5. CONCLUSIONS
We propose to use the Fisher kernel to model variation

in time for frame-based video features. While the tempo-
ral order is lost, the temporal variation is captured at two
levels: similar features are grouped together while retain-
ing variation, which enables capturing subtle variations over
time such as a exhibited by a moving car. Dissimilar features
are kept separate, preventing mixing features from unrelated
parts of the video while keeping them in a single represen-
tation, which enables capturing different shots in a video.

We demonstrated that our framework is highly general:
We showed significant improvements on a wide variety of
features, ranging from global visual features, to body-part
features, and to audio features. We also demonstrated that
our method works on a wide variety of datasets: We ob-
tained state-of-the-art performance on UCF50 using global
features instead of the more complex STIPs used in other
methods. We improved the state-of-the-art on ADL daily
activity recognition. We significantly improved the state-of-
the-art on the MediaEval 2012 genre classification task.

In future work we plan to model variation in time using
Fisher kernels on more advanced features such as STIPs.
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