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1Abstract— This paper presents an automated surveillance 

system that exploits the Fisher Kernel representation in the 

context of multiple-instance object retrieval task. The proposed 

algorithm has the main purpose of tracking a list of persons in 

several video sources, using only few training examples. In the 

first step, the Fisher Kernel representation describes a set of 

features as the derivative with respect to the log-likelihood of 

the generative probability distribution that models the feature 

distribution. Then, we learn the generative probability 

distribution over all features extracted from a reduced set of 

relevant frames. The proposed approach shows significant 

improvements and we demonstrate that Fisher kernels are well 

suited for this task. We demonstrate the generality of our 

approach in terms of features by conducting an extensive 

evaluation with a broad range of keypoints features. Also, we 

evaluate our method on two standard video surveillance 

datasets attaining superior results comparing to state-of-the-

art object recognition algorithms. 

 
Index Terms— automated video surveillance, Fisher Kernel 

representation, multiple-instance object retrieval. 

I. INTRODUCTION 

During the last years, mainly because of the recent 

turbulent world events, the automated video surveillance 

techniques became an important research field. Fast 

developments in digital camera and video processing 

technology facilitated the availability of intelligent video 

surveillance systems basically in any public places. 

However, they provide only the infrastructure to capture, 

store and distribute video documents, while leaving the task 

of event detection mainly to human operators. Manually 

analyzing footage is a highly labor-intensive and time 

consuming task. 

Today, a fully automated indexed video surveillance 

system is not commercially available. In the last years, most 

of the existing research progress was made for behavior, 

motion detection and human tracking methods. However, 

the main limitation of automated video surveillance remains 

in the searching capabilities. Once one has identified a 

possible target event, the system is not able to provide 

tracking capabilities of the entities causing that event during 

previous or future recordings, e.g., finding the other crimes 

where the burglar was involved in. Currently, this is actually 

done manually, by human operators. Considering the fact 

that a typical video surveillance system, in its simplest form 

(using only one video source), involves the recording of 

countless hours of footage, manually searching within 
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records is hugely time consuming and at the same time 

inefficient and often unreliable. In practice, video 

surveillance systems feature tens of video sources, making 

the problem even more challenging. An automated 

surveillance system should help the operator in detecting 

certain persons, and make it possible to discover unlawful 

activities more quickly (either in real-time or by searching in 

existing video footage). The goal is to eventually have a 

system that can quickly and accurately monitor large and 

very complex areas for human behaviors, and when needed 

to report observed activities to an operator, or even deploy 

assistance if required. 

The objective of this work is to discuss a solution for a 

system capable of providing content-based search 

capabilities within multiple-source video surveillance 

footage.  

The proposed system is based on Fisher Kernel (FK) and 

Support Vector Machines (SVMs) and is capable of 

automatically identifying the occurrences of a certain person 

of interest during the video footage. After a human operator 

selects the person to search for from one of the frames, our 

system does the retrieval in two steps. Firstly, we extract the 

contour of persons by using a motion detection approach. 

For each contour that contains a specific person we compute 

a set of keypoints. Then, we train a Gaussian Mixture Model 

(GMM) with these features, and determine the Fisher Kernel 

representation with respect to this new GMM. Finally, a 

SVM is trained using the initial human feedback, yielding a 

specialized classifier in the new feature space.  

This paper extends our previous work in [1] by 

introducing a new Fisher Kernel representation framework 

for video surveillance, including evaluation on new datasets 

and considering more feature extraction schemes. In [1] we 

propose a new relevance feedback algorithm based on 

Fisher Kernel representation in the context of multimodal 

video classification (using the visual, audio, motion and 

textual information). The algorithm is developed specifically 

for capturing in particular video temporal variation for video 

scenes/sequences classification. In contrast, the novel 

contributions of this work can be synthesized with the 

following:  

- We propose a novel, frame-based, method for automated 

content-based retrieval of regions of interest in video 

surveillance that exploits a combination of Fisher Kernels 

and SVMs; 

- We demonstrate the generality of our approach by 

evaluating it on a broad range of keypoint descriptors. We 

achieve better performance than other state-of-the-art 

approaches whereas evaluation is carried out on two 
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standard datasets [2, 3]. This makes the results both relevant 

and reproducible. 

The reminder of the paper is organized as follows. 

Section II discusses several relevant video surveillance 

approaches and situates our work accordingly. The proposed 

system is presented in Section III. Section IV reports the 

experimental results. Finally, Section V provides a brief 

summary and concludes the paper. 

II. PREVIOUS WORK 

Traditional passive video surveillance has two main 

drawbacks: (1) finding available human resources to observe 

the output is expensive and; (2) manual systems are 

ineffective when the number of cameras exceeds the ability 

of human operators to keep track of the evolving scene.  

Currently, video surveillance systems are mostly passive. 

They require a human operator to monitor the video feeds 

on a screen, and to alert security crews when their assistance 

is required in case of emergency. In order to remove these 

drawbacks, over the recent years there have been extensive 

research activities in proposing new ideas, solutions and 

systems for robust automated surveillance systems. A large 

number of methods are reported in recent surveys [4]. In 

general, all existing approaches rely on efficient content 

description of the video information as an intermediate step, 

namely: color and texture [5], shape [6], audio [7] and 

feature points [8].  

For instance, Landabaso et al. [9] introduced a robust 

multimodal tracking and classification system, that takes 

into account multiple characteristic features (e.g., velocity, 

shape, colour) of a 2D object appearance simultaneously in 

accordance with their respective variances. The system also 

further incorporates a classification module to classify each 

persistently tracked object, based on the analysis of local 

repetitive motion changes within the blob representation 

over a period of time. Ikizler-Cinbis and Sclaroff [13] 

extracted multiple features on the human, objects and scene, 

and employed a multiple-instance learning framework for 

human action recognition. Yang and Ramanan [14] 

proposed a method for articulated human detection and 

human pose estimation in videos based on a new 

representation of deformable part models. They detect small 

bounding boxes with a multi-scale Histograms of Oriented 

Gradients (HoG) descriptor, instead of complete body limbs, 

making their work more efficient because it prevents the 

problem of double counting. The body part detector 

combined with the Histograms of Optical Flow (HoF) 

features obtained good results on daily living activities [15]. 

However, this framework is adapted to a specific task and 

requires the use of motion compensation for foreground 

estimation and the detection and tracking of the human in 

the scene, generating a high computational cost. The 

accuracy of the algorithm is highly correlated with the 

performance of the human detector. 

More recently, most of the contribution has been made to 

find automatic ways of describing video contents with 

parameters having enough representative power for the 

retrieval task. The approaches focused on the understanding 

of video contents using the visual and spatio-temporal 

information [10]. For instance, Muller-Schneiders et al. [11] 

proposed a real-time video surveillance system which was 

specifically designed for a low volume of false positives 

because surveillance guards might get deviated by too many 

alarms caused by, e.g., rain, trees, varying illumination 

conditions or small camera motion. This system uses the 

temporal information of the video, e.g., Cuboid detector, 

Hessian 3D detector or SURF 3D [12]. In spite of their good 

performance, feature descriptors are limited by their 

computational complexity (e.g., processing a large-scale 

video database may take days or weeks) that makes them 

unsuitable for real-time scenarios. 

In this respect, current research addresses the 

development of low complexity algorithms to combine 

global with local strategies. One alternative is to use the 

Fisher Kernel representation. The Fisher Kernel theory was 

introduced by Jaakkola et al. [16] to combine generative and 

discriminative methods. Specifically, a collection of features 

is represented by its gradient with respect to a generative 

distribution. The resulting vector is then used in 

discriminative classifiers. Fisher Kernels were introduced in 

computer vision by Perronnin et al. [17], which applied the 

FK framework to represent collections of local visual 

features such as SIFT [8] using Gaussian Mixture Models as 

generative distribution. FKs found their application in other 

fields as well as, starting from web genre classification, 

event classification [9] to topic-based text segmentation [20] 

and web audio genre classification [19]. Aran and Akarun 

[18] introduced a multi-class classification strategy for a 

sign language data set. More recently, the Fisher 

representation was used by Myers et al. [21] for detection of 

user-defined events. They propose a set of multimodal 

features (i.e., audio, motion, visual) together with a set of 

late fusion techniques. 

In this paper we adapt this particular class of methods for 

the design of an automated surveillance system. We 

introduce a new approach designed specifically for 

classification that uses a combination of Fisher Kernel 

representations and Support Vector Machines (SVM) 

classifiers. The FK representation has been successfully 

applied to many fields, but to the best of our knowledge, the 

FK have never been used in automated video surveillance.  

The FK representation is particularly suited for this scenario 

because it highlights the frames that contain occurrences of 

certain objects of interests. Experimental validation on two 

standard datasets proved the superiority of this approach 

compared to other state-of-the-art methods from the 

literature. 

III. THE PROPOSED SYSTEM 

The proposed system works as in the following. The 

operator selects from few frames a region of interest of the 

object / human that needs to be searched in the database. 

Then, the system uses these frames to create a model for the 

searched object. This step defines the query to the system. 

Based on the user’s interrogation, on the next layer, the 

system automatically searches in the entire database all the 

instances of the object / human to be found. The architecture 

of the proposed system is presented in Figure 1, and it 

consists of four different layers, namely: 

(1) Firstly, the cameras collect the video information, 

which is transmitted to the motion detection layer. This 

module targets the extraction of moving objects, such as 
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persons or cars. Motion analysis is very important because it 

optimizes the next stages performance by selecting relevant 

information, removing the irrelevant frame sections and so 

reducing the computational load. For each extracted object a 

set of keypoints are extracted. Feature extraction component 

addresses the creation of visual patterns for each segmented 

moving object in the video. We extracted the keypoints by 

using several state-of-the-art algorithms. These approaches 

were chosen due to their robustness, compact representation 

and significance for human perception;  

(2) Having these keypoints, we learn a generative 

Gaussian Mixture Model [24] from the extracted keypoints;  

(3) Then, we represent all the objects using a Fisher 

Kernel representation with respect to this GMM. 

(4) The final step is represented by the discriminative 

training step, thus, we train a SVM classifier on the Fisher 

Kernel vectors. We apply this SVM and we obtain a final 

ranking.  

A. Motion detection 

Motion detection algorithms represent the first component 

of our system. These algorithms have as main purpose to 

obtain motion information, which further is required for 

objects’ extraction.  A widely-used technique for moving 

object segmentation is the background subtraction, which 

compares color or intensity of pixels in adjacent video 

frames. Significant differences are attributed to object 

motion. For this paper, we used the method presented in 

[25], where the authors propose the use of a Gaussian 

probabilistic density function (pdf) on the most recent n 

frames. Each pixel is characterized by mean t and 

variance
2

t , and it is classified as object if the following 

condition is accomplished: 

th
I

t

tt 




 |)(|
                                (3) 

where tI  is the intensity of the current pixel, and the th 

represent a threshold (a common setting is to have th = 2.5). 

We choose this method because it obtained good results in 

automated surveillance tasks [1] and proved robust to 

different types of noise and illumination changes. 

B. Feature extraction 

We extract a set of keypoints for each moving object. In 

order to describe the visual content, we compute the 

following features: 

Scale-Invariant Feature Transform (SIFT) [8] represents 

a standard for the local image description. The computation 

of the SIFT descriptor consists of several steps. First, a set 

of orientation histograms is created on 4 x 4 pixel 

neighborhoods with 8 bins each. These histograms are 

computed from magnitude and orientation values of samples 

in a 16 x 16 region around the keypoint such that each 

histogram contains samples from a 4 x 4 sub-region of the 

original neighborhood region. The magnitudes are further 

weighted by a Gaussian function with standard deviation σ 

equal to one half the width of the descriptor window. 

Finally, the descriptor becomes a vector of all the values of 

these histograms. 

Speeded Up Robust Features (SURF) [22] represents 

another robust local feature representation. SURF uses the 

sum of the Haar wavelet responses around the point of 

interest, which can be calculated very fast with the aid of the 

integral image.  

Pyramid Histogram Of visual Words (PHOW) [23] are a 

variant of dense SIFT descriptors, extracted at multiple 

scales (e.g., 5, 7, 10, 12 pixels). It uses a color space 

version, named PHOW-color that extracts descriptors on the 

three HSV image channels.  

In order to compute these features we used the VLFeat 

library [27], maintaining the default settings as provided in 

[26]. 

Figure 1. The proposed automated surveillance system: (1) motion detection and feature extraction, (2) dictionary representation,  

(3) Fisher Kernel representation, (4) SVM classification. 
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C. Fisher Kernel proposed approach 

The main idea behind Fisher Kernel (FK) representation is 

to describe a signal as the gradient of the probability density 

function that is a learned generative model of that signal.  

Intuitively, such representation measures how to modify 

the parameters of the probability density function in order to 

best fit the signal, similar to the measurements in a gradient 

descent algorithm for fitting a generative model [16]. The 

gradient vector is, by definition, the concatenation of the 

partial derivatives with respect to the model parameters. Let 

i  and i  be the mean and the standard deviation of i’s 

Gaussian centroid, )(i  be the soft assignment of 

descriptor i  to Gaussian i (with t = 1, ..., T), and let D 

denote the dimensionality of the descriptors tx . 
x

iG ,, is 

the D-dimensional gradient with respect to the mean i  and 

standard deviation i  of Gaussian i. Mathematical 

derivation leads to [17]: 
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where the division between vectors is a term-by-term 

operation. Using this representation, the final gradient 

vector xG , i.e., our new descriptor, is the concatenation of 

the 
x

iG ,  and 
x

iG ,  vectors, for i = 1, ..., T. This leads to a 2 

· T · D, where D represents the size of keypoint features. 

Initially, the user selects a few frames (approximately 2-3 

seconds of video footage - n frames), where the sought 
person appears. Then, we add to these frames a set of 

unrelated k frames which will be used as negative examples. 

Using all these frames together, i.e., n + k, we train a 

Gaussian Mixture Model on the keypoints features. The 

GMM contains several parameters which impact the 

performance of the algorithm: the number of clusters c, the 

size of keypoints features and the normalization techniques. 

First of all, to make the Fisher Kernel computationally 

feasible, we apply PCA on the original keypoints vectors of 

the frames. After having obtained the mixture model, we 

convert the original features of the frames into the Fisher 

Kernel representation using Equations 1 and 2. The final 

step is represented by the use of normalization, applied on 

the final Fisher Kernels. We applied the 2L  and power 

normalization to the final vector. 

D. Classification 

The training step is represented by a two-class Support 

Vector Machine (SVM) classifier. The classic binary SVM 

training algorithm builds a linear margin that maximizes the 

distance between two classes. SVMs can efficiently perform 

a non-linear classification by using what is called the kernel 

trick, implicitly mapping their inputs into high-dimensional 

feature spaces. The SVM approach is remarkably tolerant on 

the relative sizes of the number of training examples of the 

two classes. In our algorithm, the SVM model is trained on 

the n + k frames, according to the user’s feedback. After a 

training step, all the documents are ranked according to the 

SVMs confidence level. At the end, a final ranking is 

obtained, by ordering the classifier’s output confidence 

levels [28]. 

The SVM algorithm usually depends on several 

parameters. One of them, denoted C, controls the tradeoff 

between margin maximization and error minimization. Also, 

additional parameters may appear for non-linear mapping 

into feature space, namely the kernel parameters. In most of 

the experiments these parameters are globally tuned for the 

dataset [29]. However, a better strategy is to approximate 

the optimal value of these parameters at query level. In line 

with this, we divide the feedback samples in two parts: one 

for training, and one for the evaluation of the SVM 

parameters performance. We change the values of these 

parameters until the optimal parameters are obtained. This 

approach is not computational expensive mainly because the 

training and evaluation steps are done on a reduced set of 

results. We use two types of SVM kernels: a fast linear 

kernel and the RBF nonlinear kernel. While linear SVMs are 

very fast in both training and testing, SVMs with an RBF 

kernel are more accurate in many classification tasks. 

IV. EXPERIMENTAL RESULTS 

A. Datasets 

The validation of the proposed approach was carried out 

on two standard video datasets, namely: Scouter [2] and 

PEVID-HD [3] (see Figure 2).  

Scouter: represents an indexed video collection that 

contains several complex automated surveillance scenarios. 

It is composed by videos documents, acquired with several 

video surveillance cameras installed in the convention hall 

of UTI Grup company. The dataset consists of 30 video 

documents (3 different days x 10 cameras). The videos are 

recorded at 6 to 10 fps, with a resolution of 704 x 675 

pixels. In total, the collection contains (3 days) x (10 

cameras) x (average 120 seconds clip) x (10 frames per 

second) = approximately 36,000 annotated frames; 

PEVID-HD: consists of 21 video clips (16 seconds each, 

full HD 1,920 x 1,080 pixels, 25 fps). Video clips show 

people performing various actions in indoor and outdoor 

environments during day and night times. The people shown 

in the videos are of different gender and ethnicity. 

These datasets are in particular challenging due to the 

diversity of video footage, and specifically the variability of 

videos within the same categories.  Also, the video footage 

contains variable lighting conditions as well as different 

levels of difficulty and includes several challenges such as 

noise, low quality image or blurring, increasing the 

difficulty of its analysis. Figure 2 illustrates some image 

examples in this respect. 
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B. Evaluation 

To assess retrieval performance, we use a global measure 

of performance, the Mean Average Precision (MAP), which 

is computed as the mean of the average precision scores for 

each query: 





Q

q Q

qAP
MAP

1

)(
                           (4) 

where Q represents the number of queries, and AP() is: 
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where n is the number of frames, m is the number of frames 

of category c, and kv  is the k-th frame in the ranked list 

},...,{ 1 nvv . Finally, ()cf  is a function which returns the 

number of frames of category c in the first k frames if kv is 

of category c and 0 otherwise (we used the trec_eval scoring 

tool available at http://trec.nist.gov/trec_eval/).  

Also, we compute the classical precision and recall. 

Precision represents the proportion of the true positives 

against all the positive results (measure of false positives) 

and recall is the ratio of the number of relevant records 

retrieved to the total number of relevant records in the 

database (measure of false negatives). We also compute the 

F -Score [42] that combines the precision and the recall: 

recallprecision

recallprecision
F






2

2)1(


  

where b represent the parameter that allows us to weigh 

recall more than precision or vice versa. This is an important 

property of the F Score, and is the primary reason why this 

measure was chosen. Recall from an automated surveillance 

system should produce no false-negatives and a minimal 

number of false-positives. For this reason, recall is weighted 

twice as much as precision by setting β = 2 when calculating 

F2-Score. 

To validate our approach we conducted several 

experiments which are presented in the following. The first 

experiment (Section C) provide an experiment that studies 

the influence of motion detector on the algorithm’s 

performance. The second experiment (Section D) motivates 

the choice of the best feature keypoints for the retrieval and 

we study the influence of Fisher Kernel parameters on 

systems accuracy. The third experiment (Section E) deals 

with comparing our method with other relevant algorithms 

from the literature. Finally, we provide a computational 

efficiency discussion on the proposed framework (Section 

F). 

C. The evaluation of motion detectors 

In this experiment we study the influence of motion 

detection algorithms on the system's performance. We tested 

three types of motion detectors: a background subtraction 

motion detector [25], an accumulative optical flow approach 

[40] and the Kalman filter motion detector in [41] (see 

Section III-B). In this experiment we tested only the 

performance of the motion detection with the objective of 

successfully retrieving the moving persons. Evaluation is 

performed by comparing the results to the actual ground 

truth. The performance of each motion detector is presented 

in Table I. Good accuracy is obtained with the Kalman filter 

motion detector, namely 81%. On the other hand, 

background subtraction motion detector obtains better 

performance, accuracy is equal to 87%. The lowest 

performance is obtained with the accumulative optical flow, 

which has been shown to be very sensitive to the parameter 

tuning. 

 
TABLE I. COMPARISON OF MOTION DETECTORS ALGORITHMS. 

Motion detection algorithm Accuracy 

Background subtraction motion 87% 

Kalman filter motion detector 81% 

Accumulative optical flow method 72% 

Figure 2. Sample frames from the Scouter [2] (first line) and PEVID-HD (second line) [3] datasets. 

. 

http://trec.nist.gov/trec_eval/
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D. Parameter tuning 

In this experiment we study the influence of Fisher Kernel 

parameters on the system’s performance. First of all, to 

make the Fisher Kernel computationally feasible, we apply 

Principal Component Analysis (PCA) on these features and 

reduce the dimensions by around 40%. This step represents 

a common practice for many object recognition algorithms 

[17, 26, 30, 31]. We also applied the 2L  and power 

normalization, that was demonstrated to improve the 

performance of Fisher kernel [17]. 

 The first parameter used in our approach is represented 

by the local descriptor algorithms, used for the description 

of the keypoints. We tested three different algorithms: SIFT, 

SURF and PHOW (which represent common features for 

image retrieval tasks and gives good results on Pascal VOC 

datasets [31]).  The results are presented in Table II. For 

both datasets, the PHOW local descriptors have the highest 

stability and robustness: 55.69% MAP for the Scouter 

dataset and 43.21% MAP for the PEVID-HD dataset. SIFT 

also proves high stability in many situations, but it provide 

high sensitivity at illumination changes. Overall, the 

performance of SIFT is with 2-4% lower than the PHOW 

features. SURF provides faster speed but also it has many 

drawbacks, e.g., it is not stable to rotation and illumination 

changes. Therefore, it provides the lowest percentage of 

MAP values: 52.12% for the Scouter dataset and 38.22% for 

the PEVID-HD dataset.  

 
TABLE II. COMPARISON BETWEEN SYSTEM ACCURACY (MAP, PRECISION, 

RECALL, F2SCORE VALUES) USING DIFFERENT KEYPOINTS ALGORITHMS. 

Dataset Evaluation 
parameter 

SURF SIFT PHOW 

Scouter 

Dataset 

MAP 52.12% 53.67% 55.69% 

Precision 47.49% 48.56% 50.21% 

Recall 71.18% 72.21% 74.11% 

F2Score 64.72% 65.80% 67.66% 

PEVID-
HD 

MAP 38.22% 39.57% 43.21% 

Precision 33.73% 34.21% 37.47% 

Recall 61.74% 62.19% 67.83% 

F2Score 52.94% 53.44% 58.37% 

 

In the second experiment we analyze the influence of the 

number of centroids. The results are presented in Figure 3. 

One can observe that the performance increases with 

increasing the number of centroids. The best performance is 

obtained with 250 centroids. After this value, the 

performance decreases with 1 percent. A big improvement 

can be noticed compared to version with only one centroid: 

for the Scouter dataset the MAP parameter goes from 42% 

to 51% and from 45% to 55.69% for the SVM with RBF and 

Linear kernels. Also, for the PEVID-HD dataset the increase 

of number of centroids significantly improves the results: 

from 29% to 38% and from 31% to 43.21% for the SVM 

with RBF and Linear kernels.  

The last parameter that has to be taken into consideration 

is the SVM kernel. The second experiment shows that we 

obtain better results with linear kernel. 

E. Comparison with state-of-the-art 

In order to compare our algorithm with other approaches, 

we have selected the settings that provide the greatest 

improvement in performance: 250 GMM centroids, PHOW 

features and SVM classifier with a linear kernel. The final 

experiment consists of comparing our approach with several 

state-of-the-art descriptors and classifiers pairs. Given the 

specificity of the task, i.e., automated video surveillance, we 

tested several visual descriptors which are known to perform 

well on image retrieval tasks, namely: Histograms of 

Oriented Gradients (HoG) features [15], Color Naming 

histograms (CN) [16], color moments (CM) [17], Local 

Binary Pattern (LBP) [18] and Bag of Words (BoW) [19] 

(with SIFT and PHOW features). Also, we train these 

features using a broad category of classifiers: nearest 

neighbor (KNN) [20], Random Forests (RF) [20], linear 

SVM and SVM with RBF and Chi-Square kernel classifier 

[14]. Figure 4 presents the values of MAP scores for other 

state-of-the-art algorithms.  On the Scouter dataset, the best 

results from state-of-the-art is obtained by BoW (with 

PHOW features) using SVM with Chi-Square kernel, 

namely 49.26%. Similar performances are performed with 

HoG features with KNN classifier and Color Naming 

histograms with SVM Chi-Square (46.03% and 45.08%). 

On the other hand, the color moment features obtain lower 

MAP rates with 9 to 10 percents. Similar results are 

obtained for the PEVID-HD dataset: the BoW (on PHOW 

features) with SVM classifier obtain 32.41%, while color 

Figure 3. Mean Average Precision (MAP) while varying the number of cluster centers. 
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naming feature has a MAP value of 33.93%.  

We present our results compared with the best state-of-

the-art results in Table III. The proposed approach has the 

highest values for both datasets. We obtain 55.69% for the 

Scouter dataset and 43.21% for the PEVID-HD dataset. This 

represents an improvement of more than 6 percents for the 

Scouter dataset and more than 11 percents for the PEVID-

HD dataset.  

 
TABLE III. COMPARISON OF SYSTEM PERFORMANCE USING THE PROPOSED 

APPROACH AND THE BEST STATE-OF-THE-ART APPROACHES (MAP VALUES). 
 

Descriptor Classifier MAP 

Scouter dataset 

Fisher kernel with 

PHOW features 

Linear SVM 55.69% 

BOW with PHOW 

features  

SVM with Chi-Square kernel 49.26% 

HOG KNN 46.03% 

Color naming SVM with Chi-Square kernel 45.08% 

Baseline Random decision 10.18% 

PeVID-HD dataset 

Fisher kernel with 
PHOW features 

Linear SVM 43.21% 

Color naming SVM with Chi-Square kernel 33.93% 

BOW with PHOW 

features 

SVM with Chi-Square kernel 32.41% 

Baseline Random decision 8.37% 
 

We conclude that the proposed approach improves the 

retrieval performance, outperforming some other existing 

approaches, e.g., BoW, HoG, color naming, etc. 

Figure 6 presents several system responses, when we use 

the best system configuration (Fisher Kernel with PHOW 

features and Linear SVM). The first query provide five 

examples of true positives (TP) examples in which the 

object found by the system are correctly identified according 

to the ground truth (note the scenario difficulty, different 

fields of view, object dimension, different object color, 

illumination, camera noise and other objects around the 

object of interest). Anyway there are also two false 

negatives situations (NT) in which the system is unable to 

classify correctly (according to ground truth) the object 

detected due to the signal noise, illumination conditions 

(insufficient, over exposed), partial object view (out of 

frame, junction with another object) or dimension too low. 

A similar example is also provided for the PEViD-HD 

dataset. Five of them represents frames that contains objects 

correctly identified according the ground truth. On the other 

side, we also provide several examples where the system is 

not able to provide correct response. 

 

F. Computational complexity 

In this section we discuss the computational complexity 

of the proposed description framework. We analyze the time 

for computing each processing step, from feature extraction 

to video classification. We perform this experiment on the 

Scouter dataset which contains more than 36,000 of video 

frames. The run-time is evaluated on a regular PC machine 

using a 2.9 GHz Intel Xeon CPU and 24GB of RAM. We do 

not use parallelization. Experiments were run with SIFT 

features and Linear SVM classifier. The computational cost 

per frame is presented in Figure 5. Descriptor extraction 

takes 150 milliseconds (ms) per image. The input/output 

operation lasts 30 ms per frame. The Fisher computation is 

very fast, namely 32 ms per frame. Finally, classification 

takes 8 ms for all classes.  

 
Figure 5. Total computational time (ms) per frame for the proposed 

video surveillance framework (Scouter [2] dataset). 

 

 

 

Figure 4. Mean average precision values using various descriptor - classifier combinations (1 - HoG, 2 - LBP, 3 - CM, 4 - CN3x3, 5 - CSD,  

6 - BoW-SIFT, 7 - BoW-PHOW). 
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A processing chain would take 450 ms per frame (12 

seconds for 1 second of video, i.e., 25 frames). However, the 

most time-consuming components (i.e., motion detection 

and SIFT computation) can be computed only once, when 

the video footage is recorded. Therefore, we can take into 

consideration only the last two components which would 

take 40 ms per frame. 

We conclude that this represents a reasonable, near real-

time, cost considering the achieved performance. This is 

achieved without any algorithm optimization nor adequate 

hardware acceleration or parallel implementation. Using 

parallel processing will allow to easily achieve even better 

real-time performance. 

V. CONCLUSIONS 

In this paper we addressed the problem of content-based 

search for video surveillance. We formulated and analyzed a 

new approach that uses the Fisher Kernels theory. Our 

method consists of two steps: (1) altering the feature space 

by training a Gaussian Mixture Model on the reduced 

number of relevant frames and re-representing those features 

using Fisher Kernels; (2) a classification layer that uses a 

Support Vector Machine algorithm. We have tested several 

normalization techniques, keypoints features and discuss the 

influence of parameters on system’s performance. Our 

experiments showed that our method always performs 

equally or better than other methods: Compared to the next 

best method, Bag of Words, we get an improvement on 

Scouter 6%, while for PEVID-HD we also get a higher 

improvement of 11% MAP. Also, we showed that we do not 

need large number of frames to train the FK framework, we 

achieve the best performance with only few examples. This 

makes the proposed approach implementable for a real time 

automated surveillance system.  

Regarding the further continuation paths, future work will 

mainly consist in improving the computational speed of the 

proposed method. Also, we will adapt the method to address 

a higher diversity of video categories (use of the Internet) 

and we want to extend the Fisher kernel to other modalities, 

namely to use elaborated spatio-temporal features.  
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Figure 6: First two images represents the query. The retrieved results are marked with the red rectangles - ranking order from left (highest) to right. 

Correct detections are denoted by green (ok) whereas false detections are depicted with a red x. 


