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CELLULAR AUTOMATA BAG OF VISUAL WORDS FOR
OBJECT RECOGNITION

Ionuţ Mironică1, Bogdan Ionescu2, Radu Dogaru3

In this paper we propose and analyze a novel method for object recogni-
tion, inspired by the cellular automata theory. The proposed method has
a low computational complexity, and can be incorporated in the standard
Bag-of-Visual-Words framework. Experimental tests conducted on several
standard image databases show that the proposed method provides a signif-
icant improvement in the classification performance, outperforming some
other classic approaches.

Keywords: object recognition, image classification, local descriptors, Bag-
of-Visual-Word.

1. Introduction

During the last 20 years Content Based Image Retrieval (CBIR) has been
steadily gaining importance in the computer vision community. This issue be-
came more critical due to the extent development of technology, e.g., portable
multimedia terminals, wireless transmission protocols, imaging devices which
basically unlimited the access to information everywhere. Information retrieval
has become now a part of our daily social interaction.

The main idea behind CBIR is to compactly describe an image by us-
ing a digital signature which best represent the underlaying visual contents.
These descriptors are to be stored by the system and then used to match a
user query image to the most resembling image within the data set (e.g., Inter-
net, databases, etc). This is carried out by employing some similarity criteria
[1]. Due to the subjective nature of the process, the system typically provides
the user with not only one response but a ranked list of possible choices to
select from. A major part of the CBIR work focused on object recognition
in images. Generally, the object recognition problem can be regarded as a
labeling problem based on models of known objects. Formally, given an image
containing one or more objects of interest (and background) and a set of la-
bels corresponding to a set of models known to the system, the system should
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assign correct labels to regions, or a set of regions, in the image. The object
recognition involves a various number of difficult problems: starting from the
fact that objects may vary somewhat in different view points, in many differ-
ent sizes / scale or even when they are translated or rotated to illumination
challenges. Also, the objects should be recognized even when they are partially
obstructed from view.

Today, most of common object detection techniques are based on local
features, which have been widely used and demonstrated high performance
rates. Actually, the most representative approach of this family, the Bag-
of-Visual-Words (BoVW) algorithm [2] became a facto standard for image
retrieval and recognition. BoVW models are very popular in object recognition
due to their robustness to noise and occlusions.

The remainder of the paper is organized as follows. Section 2 presents
a state-of-the art of the literature and situates our work accordingly. Section
3 depicts the algorithm of the proposed approach. Experimental validation is
presented in Section 4 while Section 5 presents the conclusions and discusses
future work.

2. Previous Work

Image classification remains one of the most challenging problems, mainly,
because it implies to predict complex semantic categories, like scenes or ob-
jects, from raw pixels. The are several major approaches that have emerged in
the last decade towards this goal. The first is the design of global descriptors,
e.g., image histograms. However, this class of approaches obtain low results for
complex object categories, mainly, because these are not invariant to object
variations, such us illumination, rotation, shape, color or translation.

The second class of algorithms is represented by the notion of mid-level
representations inspired from the text retrieval community, based on the Bag-
of-Visual-Words model [2]. The BoVW model can be applied to image classi-
fication, by treating image features as words. The typical BoVW model works
as follow. Firstly, the algorithm identifies a list of local patches from the im-
age, either by densely sampling [3] or by a interest point detector [4]. These
local patches, represented by vectors in a high dimensional space are often
called keypoints. Next step for the BoVW model is to generate a codebook
or dictionary (analogy to a word dictionary). A codebook can be considered
as a sum of the most representative keypoints. One simple method to create
the dictionary is to perform a simple k-means clustering over all the training
keypoints and the codewords are then defined as the centers of the learned
clusters. To reduce the high computational cost of k-means, several meth-
ods were proposed, namely hierarchical k-means in [11] and random forests in
[3]. In order to efficiently handle these key points, the key idea is to quan-
tize each extracted keypoint into one of visual words (from a already created
dictionary), and then to represent each image by a histogram of the visual
words. This vector quantization procedure allows to represent each image by
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a histogram of the visual words, which is often referred as the bag-of-words
representation, and consequently converts the object categorization problem
into a text categorization problem.

Many different techniques for describing local feature keypoints have been
developed. The simplest descriptor is a vector of image pixels [12]. However,
the high dimensionality of such a description results in a high computational
complexity for recognition and low recognition rates.

Lowe [4] proposed a scale invariant feature transform (SIFT). Today, the
SIFT descriptor represents a standard for the local image description. The
compute of SIFT descriptor consists in several steps. First, a set of orientation
histograms is created on 4x4 pixel neighborhoods with 8 bins each. These
histograms are computed from magnitude and orientation values of samples in
a 16 x 16 region around the keypoint such that each histogram contains samples
from a 4 x 4 subregion of the original neighborhood region. The magnitudes
are further weighted by a Gaussian function with standard deviation σ equal
to one half the width of the descriptor window. Finally, the descriptor becomes
a vector of all the values of these histograms.

In [13], Ke et al. proposed the use of PCA-SIFT. In other words, PCA-
SIFT uses Principal Component Analysis (PCA) to normalize and decrease
the SIFT feature. The feature vector is significantly smaller than the standard
SIFT feature vector, and it can be used with the same matching algorithms.

Another robust local feature representation was proposed by Herbert Bay
et al. in 2008 [14]. Speeded Up Robust Features (SURF) uses the sum of the
Haar wavelet responses around the point of interest, that can be calculated
very fast with the aid of the integral image. Mikolajczyk and Schmid [15] use
a multi-scale version of the Harris interest point detector to localize interest
points in space and then employ the Harris [16] algorithm for scale selection
and affine adaptation.

In this paper we propose a strategy for building local feature descriptors
that capture local information by using the Cellular Automata (CA) theory
[7]. The CA theory have been successfully applied for many image processing
fields from edge detection [8] to skin detection [9], but, to our knowledge, the
CA have never been used in object recognition using a similar framework. This
idea was exploited in [10] but in the context of texture categorization.

However, the texture processing is a fundamentally different and more
easier problem because the texture categories contains a lower intra variability
class. The main difference between these approaches is that the proposed
algorithm is applied as a local descriptor in a Bag-of-Visual-Words framework,
while in [10] a global image feature representation is created.

Our main contributions are summarized as follows: (1) we propose a new
robust local feature for object categorization; (2) we incorporate the new fea-
tures in a general and flexible learning framework, namely the Bag-of-Visual-
Words representation and apply a popular nonlinear SVM classifier on our
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Fig. 1. The proposed object recognition algorithm.

descriptors to classify the objects; (3) we achieve promising results compara-
ble to the state-of-the-art results on Caltech101 [5] and Caltech256 [6], and
significant improvements over state-of-the-art SIFT features.

3. Proposed method

3.1. The Bag-of-Visual Words architecture

The architecture of the proposed system is presented in Figure 1, and
it consists of four different layers. First, we extract a list of image keypoints
using a dense sampling strategy, as proposed in [5]. For each keypoint, we
compute a local descriptor. A classical approach to compute local keypoints is
to calculate SIFT [4] or SURF [14] descriptors. SIFT had proven high stability
in many situations, but with slow computational speed and high sensitivity
at illumination changes. SURF provides faster speed but also it has many
drawbacks, e.g., it is not stable to rotation and illumination changes. In order
to suppress these disadvantages we propose a new local non-linear feature,
inspired from the cellular automata theory (presented in Section 3.2).

Then, we create a dictionary of visual words. By using the k-means
algorithm, the sampled features are clustered in order to quantize the space
into a discrete number of visual words. We use a visual vocabulary of 4,096
words (which represent a common value for video related tasks and gives good
results on both the TRECVID and Pascal VOC datasets [17, 18]) and final
descriptors are represented at two different spatial scales of a spatial pyramidal
image representation (entire image and quadrants) [27]. Afterwards, for each
image a global histogram descriptor is computed, by assigning each visual word
to the nearest cluster center from the previous step.

The final layer is represented by the classification algorithm. Support
Vector Machines (SVMs) are a very popular classifier due to its robustness
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against large feature vectors and sparse data. The choice of SVM-kernel has a
large impact on performance. In our experiments, we test three types of SVM
kernels: a fast linear kernel and two non-linear kernels, namely the RBF and
Chi-Square kernels. While linear SVMs are very fast in both training and test-
ing, SVMs with an non-linear kernel are more accurate in many classification
tasks.

3.2. Cellular automata approach for local feature description

A cellular automata (CA) represents a discrete model and consists of a
regular grid of cells, that contains a finite number of states, such as on and off
(or ”0” and ”1”). Also, in more complex simulations the cells may have more
different states and the grid can have any finite number of dimensions.

Our algorithm is inspired by the cellular automata theory [7]. The pro-
posed cellular structure consists on a Moore Neighborhood Model (see Figure
2 (a)) with two distinct states: 0 and 1. The red cell is the center cell, the blue
cells are the neighborhood cells. The states of these cells are used to calculate
the next state of the (red) center cell according to the defined rule.

Therefore, the first task is to transform the local patch in a binary lattice.
To create binary images, we use a thresholding process with a various number
of limits. During the thresholding process, individual pixels in an image are
are given a value of ”1” if their value is greater than some threshold value and
as ”0” otherwise. We have used in our experiments a fixed number of equally
spaced thresholds T (from one to 10 thresholds). Afterwards, by using these
binary images, we compute a global feature, by using the following formula:

C =
1

N ×M

M∑
i=1

[
N∑
j=1

|F (i, j)|

]
(1)

where M and N are the image width and height (see more details about the
image size in Section 4) and F (i, j) is a kernel function, computed on current
pixel neighborhood. The kernel function is defines as:

F (i, j) =
∑

k∈Ni,j

|Ii,j(k)A(k)| (2)

whereNi,j represents the 3×3 neighborhood centered around the (i, j) location,
Ii,j(k) is a pixel value at location k (k = 1..9) in the neighborhood centered
on (i, j) and A(k) is one of the 3× 3 template function presented in Figure 2
(b). Finally, the features size becomes K × T , where T represents the number
of the thresholds and K is the number of kernel functions (2 for our scenario).

The use of presented architecture contains several motivations to imple-
ment it in a general object recognition framework. It was demonstrated in [28],
that a value of C close to 1 indicates a homogeneous state while a value of
C = 0.5 is a measure of a perfect (high frequency) chaotic pattern. At the other
extreme C = 0 indicates the presence of perfectly regular chess-board pattern.
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Fig. 2. (a) The Moore neighborhood for a cellular automata (b) Four
function kernels used for the computing of the non-linear parameters.

Consequently, such synthetic indicators as C are strongly correlated with the
human perception. Using various templates ensures that various directions of
interests in the image are better characterized.

Our key idea is to define a local feature that, instead of being composed
of a single SIFT descriptor, is a multi-resolution set of descriptors. By us-
ing several thresholds and non-linear functions, it allows us to capture the
appearance of a local patch at multiple levels of detail and to maintain the
distinctiveness, all while preserving invariance at each level of resolution.

4. Experimental results

The validation of the proposed object recognition approach was carried
out on two standard image datasets: Caltech-101 [5] and Caltech-256 [6].

The Caltech-101 dataset (collected by Fei-Fei et al. [5]) consists of 9,144
images from obtained using Google Image Search. The dataset includes 101
object categories (such as animals, vehicles, flowers and objects), and contains
from 31 to 800 images per category. Most images have medium resolution,
about 300x300 pixels. The significance of this database is its large inter-
class variability. As suggested by the original dataset and also by many other
researchers [20, 21, 22], we partitioned the whole dataset into 10, 20 and 30
training images per class and no more than 50 testing images per class, and
measured the performance using average accuracy over 102 classes (i.e., 101
classes and a ”background” class).

The Caltech-256 dataset (collected by Griffin et al. [6]) consists of images
from 256 object categories and is an extension of Caltech-101. It contains from
80 to 827 images per category. The total number of images is 30,608 with an
average resolution of 300x300pixels. The significance of this database is its
large inter-class variability, as well as a larger intra-class variability than in
Caltech-101. Moreover there is no alignment amongst the object categories.
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Fig. 3. Sample images from the Caltech101 [5] and Caltech256 [6]
datasets.

Our experimental results are generated by using 10, 20 or 30 images per cat-
egory for training, while for testing, we used 50 images per category. These
number of train and test images are typically used for this dataset [6, 23, 24].

These datasets have a significant variation in the position of the object
instances within images of the same category, and also different background
clutter between images. Figure 3 illustrates some image examples in this re-
spect. In order to asses the system performance, we use the accuracy mea-
sure, which represents the official metric for the Caltech-101 and Caltech-256
datasets.

4.1. Choose of the parameters

In this experiment we analyze the influence of the parameters on the
system performance. We perform the optimization of the parameters on a
quarter of the Caltech-101 dataset.

In the first test we study the influence of the number of thresholds (see
Section 3.2). The results are exposed in Figure 4.1. It can be observed that the
best results are obtained using 7 thresholds. After this value, the performance
remains constant.

The second parameter is represented by the choice of kernel functions.
We tested four different kernel functions (see Figure 4.2.). The first kernel
function obtain the best results. Also, it can be observed that a dense sampling
strategy leads to better performance with more than 8 percents.
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Fig. 4. The influence of parameters on the system performance: (1)
the variation of the thresholds number and the SVM kernel and (2)
the performance of various template functions.

The last parameter that has to be taken into consideration is the SVM
kernel. Initial experiments showed that we obtained better results with non-
linear Chi-Square kernel (see Figure 4.1.). In the next experiments, we will
use the non-linear Chi-Square kernel.

4.2. Comparison with SIFT features

In this section, we compare the performance of the proposed approach
with the classical SIFT local features. We perform this comparison on the
entire Caltech-101 dataset. The values are presented in Table 1. The proposed
approach tends to provide better retrieval performance in all cases (see bold
values). Also, the proposed keypoints descriptor is more compact. The feature
size of our approach is equal to 14 values (7 thresholds × 2 kernel functions),
while the SIFT representation is 9 times bigger (128 values).

Overall, for the Caltech-101 dataset, the BoVW with SIFT features and
SVM non-linear kernels provide good results, but the proposed approach is
better. The presented algorithm obtains an accuracy of 73.76%, while the
BoVW-SIFT approaches is lower with more than 9 percents. At the other end,
the smallest performance is obtained using BoVW with Linear SVM kernel.

To conclude, using the CA features to model the keypoints improves
the BoVW model, yielding much better results than the state-of-the-art SIFT
features on the Caltech-101 dataset.

4.3. Comparison with state-of-the-art

In order to compare our algorithm with other object recognition ap-
proaches, we have selected the settings that provides the greatest improvement
in performance: seven thresholds and SVM classifier with Chi-Square kernel.
All the experiments from this section are performed on the entire Caltech-101
and Caltech-256 datasets.
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Table 1
Comparison of accuracy between SIFT features the proposed

approach (the highest values are depicted in bold).

Method Accuracy

Caltech-101 dataset

BoVW - SIFT [2] - SVM with Linear kernel 58.12%
BoVW - SIFT [2] - SVM with RBF kernel 62.88%
BoVW - SIFT [2] - SVM with Chi-Square kernel 64.17%
BoVW with CA features (this paper) 73.76%

Table 2
Accuracy for various state-of-the-art algorithms for

Caltech-101 [5] and Caltech-256 [6] datasets (the highest values

are depicted in bold).

Method Accuracy

Caltech-101 dataset

Chen et al. (ICML) [20] 65.80%
Aflalo et al. (ML) [21] 67.07%
Ma et al. (CVPR) [22] 70.38%
This paper 73.67%

Caltech-256 dataset

van Gemert et al. (ECCV) [23] 27.17%
Yang et al. (CVPR) [24] 34.02%
Griffin et al. [6] 34.10%
Wang et al. (CVPR) [25] 41.19%
This paper 42.12%

In the following, we compare our approach against other validated algo-
rithms from the literature. In [20], the authors proposes a new convolutional
factor analysis model that uses a deep feature learning. Aflalo et al. [21]
present a novel algorithm based on Multiple Kernel Learning (MKL) strate-
gies. Also, Ma et al. [22] suggested a computational system of object cate-
gorization based on decomposition and adaptive fusion of visual information.
A coupled Conditional Random Field is developed to model the interaction
between low level cues of contour and texture, and to decompose contour and
texture in natural images. In order to improve the BoVW model, Germert et
al. [23] proposes a new kernel codebook strategy, and Wang et al. [25] use a
new Locality-constrained Linear Coding algorithm.

The results can be visualized in Table 2. As can be seen, our approach
yields the highest accuracy for both dataset, namely 73.67% for Caltech-101
dataset and 42.12% for the Caltech-256 dataset. This shows that the proposed
local representation is effective for a object recognition approach. We conclude
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that our framework yields better performance than other state-of-the-art algo-
rithms. Figure 5 presents several system responses, when we use the proposed
system configuration: first four lines represent the true positives (TP) exam-
ples in which the object found by the system are correctly identified according
to the ground truth (note the scenario difficulty, different fields of view, object
dimension, different object color, illumination, camera noise and other objects
around the object of interest). Anyway there are also false negatives situations
(line five and six) in which the system is unable to classify correctly (according
to ground truth) the object detected due to the similarity between classes.

Fig. 5. Examples of system classification responses: first four lines
represent examples in which the object found by the system are cor-
rectly identified according to the ground truth, and the last two lines
provide false negative examples (images from the Caltech-101 dataset
[5]).
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5. Conclusions

We demonstrate how our local descriptors improve image classification
results for a standard Bag-of-Visual-Words approach. Experimental results
on a wide spectrum of benchmark problems suggest that given its simplic-
ity, our approach may be a good alternative for local keypoints descriptors.
In all the experiments our approach achieves the best results on recognition
scenarios. Also, the proposed features demonstrate their robustness, compact
representation and significance for human perception.

Future work will mainly consist of fine tuning and adapt the method to
address to object recognition and event detection in video documents. Also,
we will try to integrate the algorithm in other object recognition framework,
such as Fisher kernel.
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