

Fisher Kernel based Relevance Feedback for Multimodal Video Retrieval

Ionuț MIRONICĂ ¹	Bogdan IONESCU ^{1,2}	Jasper Uijlings ²	Nicu Sebe ²			
¹ LAPI – University Politehnica of Bucharest, Romania ² MHUG DISI – University of Trento, Italy ACM International Conference on Multimedia Retrieval, ICMR 2013 Dallas Texas USA April 16 - 19 2013						

400 DE AN

FOUTEHANCS

CBVR System

Relevance Feedback

• Relevance feedback uses user-input to improve results

Relevance Feedback

State-of-the-Art algorithms:

- Rocchio Algorithm
- Feature Relevance Estimation (FRE)
- Train Classifier (SVM)

This paper:

• Fisher Kernel representation + SVM

Rocchio Algorithm

• Update the query feature.

Feature Relevance Estimation (FRE)

• Reweigh features according to variance of relevant documents

Train Classifier (SVM)

Initial retrieval

Train Classifier (SVM)

• User feedback

Train Classifier (SVM)

 Initial retrieval • User Feedback

• Train SVM

- represents a signal as the gradient of the probability density function that is a learned generative model of that signal

 represents a signal as the gradient of the probability density function that is a learned generative model of that signal

 represents a signal as the gradient of the probability density function that is a learned generative model of that signal

Fisher Kernel based RF

- Use a video document as a "query by example"

- The system returns top *k* documents (*k*=20)

- Use these document to train an Gaussian Mixture Model (GMM)
- Compute the Fisher Kernels for all the features (reshape the features space)
- Apply Fisher Kernel Normalization

Fisher Kernel based RF

The user selects the relevant documents

- The system is trained with these samples (SVM classifiers)
- The top N documents are reranked using the classifier confidence level (N=2000)

 If the results are not satisfactory the use can continue with more Relevance Feedback iterations)

Fisher Kernel Framework

Tuesday, April 16, 2013

ICMR 2013

Experimental Setup

MediaEval 2012 Dataset

•14,838 episodes from 2,249 shows \sim 3,260 hours of data •split into Development and Test sets

5,288 for development / 9,550 for test

BronxTalk | Oct. 10, 2011

Lawrence Lessig

Student Elections Turn Violent

ICMR 2013

Experimental Setup

MediaEval 2012 Dataset

26 Genre labels

1000 art 1002 business 1004 comedy 1006 default_category 1008 educational 1010 gaming 1012 literature 1016 politics 1018 school and education 1020 technology 1022 the mainstream media 1024 videoblogging

1001 autos_and_vehicles 1003 citizen journalism 1005 conferences and other events 1007 documentary 1009 food and drink 1011 health 1013 movies_and_television 1014 music_and_entertainment 1015 personal_or_auto-biographical 1017 religion 1019 sports 1021 the environment 1023 travel 1025 web_development_and_sites

Experimental Setup

• Precision – Recall Chart

Precision =		Number of returned relevant documents		
		Total number of returned documents		
Recall	= _	Number of returned relevant documents		
		Total number of relevant documents		

Mean Average Precision

- summarize rankings from multiple queries by averaging average precision

Simulated Relevance Feedback (one round)

Visual Descriptors

Global MPEG 7 related descriptors:

Local Binary Pattern (LBP), Autocorrelogram, Color Coherence Vector (CCV), Edge Histogram (EHD) Color Layout Pattern(CLD), Scalable Color Descriptor classic color histogram (hist), color moments

- Global HoG
- Global Structural Descriptors describe contour properties and appearance parameters [IJCV, C. Rasche'10]

Global Descriptors = mean and variance over all frame descriptors

Audio Descriptors

Standard Audio Features

Block-based Audio Features

- Spectral Pattern, delta Spectral Pattern,
- variance delta Spectral Pattern,
- Logarithmic Fluctuation Pattern ,
- Correlation Pattern, Local Single Gaussian model
- Spectral Contrast Pattern,
- Mel-Frequency Cepstral Coefficients

- Zero-Crossing Rate,
- Linear Predictive Coefficients,
- Line Spectral Pairs,
- Mel-Frequency Cepstral Coefficients
- spectral centroid, flux, rolloff, and kurtosis,

variance of each feature over a certain window.

[B. Mathieu et al., Yaafe toolbox, ISMIR'10]

[Klaus Seyerlehner et al., MIREX'11, USA]

Text source: ASR [Lamel, et al., ICNL'08]

TF-IDF descriptors (Term Frequency-Inverse Document Frequency)

- 1. extract root words
- 2. remove terms <5%-percentile of the frequency distribution

3. select term corpus: retaining for each genre class m terms (e.g. m = 150 for ASR) with the highest χ 2 values that occur more frequently than in complement classes

4. for each document the **TF-IDF** values are computed.

Optimizing Fisher Kernel

- number of GMM Centroids

Tuesday, April 16, 2013

ICMR 2013

Comparison to State-of-the-Art algorithms

- Rocchio
- Nearest Neighbor RF NB
- Boost RF
- SVM RF
- Random Forest RF (RF)
- Relevance Feature Estimation - (RFE)

Comparison to State-of-the-Art algorithms

Feature	Without RF	Rocchio	NB	Boost	SVM	Random Forest	RFE	FK Linear	FK RBF
HoG	17.18	25.57	24.18	26.72	26.49	26.89	27.50	29.46	<u>29.59</u>
Structural	14.82	21.96	23.73	23.63	24.62	24.69	23.91	<u>26.28</u>	23.96
MPEG 7	25.97	30.88	34.09	32.55	32.90	36.85	31.93	40.50	<u>40.80</u>
All Visual	26.18	32.98	34.25	35.99	36.08	<u>42.28</u>	32.43	41.33	42.23
Standard Audio	29.26	32.71	34.88	32.88	38.58	40.46	44.32	44.80	<u>46.34</u>
Block Based Audio	21.23	35.39	35.22	39.87	31.46	33.41	31.93	<u>43.96</u>	43.69
Text	20.40	32.55	26.91	26.93	34.70	34.70	25.82	34.84	<u>35.14</u>
All features	30.29	37.91	39.88	38.88	40.93	45.31	44.93	46.43	<u>46.80</u>

(MAP values)

Fisher Kernel representation on all data or only relevant data

Feature	FK on all data	FK on relevant data
Visual features	34.02%	<u>38.23%</u>
Standard audio features	38.25%	<u>46.34%</u>
Text features	32.37%	<u>35.14%</u>

(MAP values)

Fisher Kernel for Temporal Variation

 represents a signal as the gradient of the probability density function that is a learned generative model of that signal

Fisher Kernel for Temporal Variation

 represents a signal as the gradient of the probability density function that is a learned generative model of that signal

Frame Agreggation with Fisher Kernel

Number of GMM Centroids

Frame Agreggation with Fisher Kernel

Feature	FKRF RBF (T=1)	Frame Aggregation with Fisher Kernel	n
HoG	29.59%		32.87%
MPEG-7	40.80%		45.43%
		()	MAP values)

almost 5% improvement for MPEG-7

Conclusions

- Relevance feedback is a powerful tool for improving content based video retrieval systems
- Fisher Kernel RF outperforms state-of-the-art.
- Modelling the temporal variation in video using the Fisher Kernel yields 5% improvement for MPEG-7 features