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ABSTRACT

This paper proposes a novel approach to relevance feedback
based on the Fisher Kernel representation in the context of
multimodal video retrieval. The Fisher Kernel representa-
tion describes a set of features as the derivative with respect
to the log-likelihood of the generative probability distribu-
tion that models the feature distribution. In the context of
relevance feedback, instead of learning the generative prob-
ability distribution over all features of the data, we learn it
only over the top retrieved results. Hence during relevance
feedback we create a new Fisher Kernel representation based
on the most relevant examples. In addition, we propose to
use the Fisher Kernel to capture temporal information by
cutting up a video in smaller segments, extract a feature
vector from each segment, and represent the resulting fea-
ture set using the Fisher Kernel representation. We evaluate
our method on the MediaEval 2012 Video Genre Tagging
Task, a large dataset, which contains 26 categories in 15.000
videos totalling up to 2.000 hours of footage. Results show
that our method significantly improves results over existing
state-of-the-art relevance feedback techniques. Furthermore,
we show significant improvements by using the Fisher Ker-
nel to capture temporal information, and we demonstrate
that Fisher kernels are well suited for this task.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing]: [Indexing meth-
ods]; H.3.3 [Information Search and Retrieval]: [Re-
trieval models, query formulation, relevance feedback]

General Terms

Algorithms, Performance, Experimentation
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1. INTRODUCTION
The actual challenge of the existing information retrieval

systems is in their capability of identifying and selecting
only relevant information, according to some user specifi-
cations. This issue became more critical due to increase
of technology, e.g. portable multimedia terminals, wire-
less transmission protocols, imaging devices which basically
makes the information accessibile from everywhere. In or-
der to improve performance, existing systems are turning
towards multimodal approaches attempting to exploit the
benefits of fusing various modalities such as text, visual and
audio. Despite the high variability of automatical content
descriptors used and of the classification techniques, Con-
tent Based Video Retrieval Systems (CBVR) are inherently
limited by the gap between the real world and its represen-
tation through computer vision techniques [1].

An effective way to narrow the semantic gap is to use
the user’s feedback in the retrieval process, which is known
as Relevance Feedback (RF). A general RF scenario can be
formulated as follow: for a certain retrieval query, the user
marks what results are relevant and non-relevant. Then,
the system automatically computes a better representation
of the information and/or retrains the classifier to better
refine results. Relevance feedback can go through one or
more iterations of this sort. This basically improves the
system’s response based on query related ground-truth.

In this paper, we propose a new RF approach for video
genre retrieval, using a combination of Fisher Kernels with
SVM Classifiers. Fisher Kernels (FK) are a powerful frame-
work which combines the advantages of a generative algo-
rithm with the strengths of discriminative approaches [2].
The main idea of FK is to describe a signal with a gradient
vector derived from a generative probability model (Gaus-
sian Mixture Model - GMM) and then to train this represen-
tation with a discriminative classifier (in most of the cases
SVM). The Fisher Kernels have been successfully applied to
many fields from image categorization [3], to audio indexing
[5] and handwritten word-spotting [4], but, to our knowl-
edge, the FK have never been used in Relevance Feedback,
or in video classification.

In order to describe a document, most of the RF strategies



use a single feature vector. However, video documents can
be considered as a sequence of scenes, and the features from
each scene can be used to model and retrieve the video con-
tent. Because we use the Fisher Kernel framework, we can
retain some form of temporal relations of the video scenes
in our relevance feedback approach.
Experimental tests conducted on the large video database

MediaEval Genre Tagging task 2012 [6] and using current
state-of-the-art multimodal video descriptors, prove that the
proposed RF increases retrieval performance and outper-
forms other classic approaches. In addition, the proposed
approach allows a fast implementation similar to a classical
SVMRF strategy, but with a higher increase of performance.
We also propose several modifications to the original frame-
work that can boost the accuracy of the RF algorithm.

2. RELATEDWORK
The idea of relevance feedback is to take advantage of the

user’s input on the initially returned results for a given query
and to use this information to refine and improve the qual-
ity of the results. Relevance feedback has proven to increase
retrieval accuracy, and to give more personalized results for
the user [10] [11] [12] [13] [15]. Recently, a relevance feed-
back track was organized by TREC to evaluate and compare
different relevance feedback algorithms for text descriptors
[7]. However, relevance feedback was successfully used not
only for text retrieval, but also for image features [11] [12]
[13] [15] and multimodal video features [10] [21].
Most of the relevance feedback algorithms can be divided

in two main classes: those that change the feature’s repre-
sentation, and, those that use a re-learning strategy with a
classifier.
One of the earliest and most successful RF algorithms

is the Rocchio algorithm [9] [10]. Using the set of R rele-
vant and N non-relevant documents selected from the cur-
rent user relevance feedback window, the Rocchio algorithm
modifies the feature of the initial query by adding the fea-
tures of positive examples and subtracting the features of
negative examples to the original feature.
The Relevance Feature Estimation (RFE) algorithm [11]

assumes that for a given query, according to the user’s sub-
jective judgment, some specific features may be more impor-
tant than other features. The idea of the re-weighting strat-
egy is to analyze the relevant objects in order to understand
which dimensions are more important than others. Every
feature has an importance weight computed as wi = 1/σ
where σ denotes the variance of relevant documents. There-
fore, features with higher variance with respect to the rel-
evant queries become less important than elements with a
reduced variation.
More recently, machine learning techniques found their

application with relevance feedback approaches. In these
approaches, the relevance feedback problem can be formu-
lated as a two class classification of the negative and posi-
tive samples. After a training step, all the documents are
ranked according to the classifiers’s confidence level. Some
of the most successful techniques use Support Vector Ma-
chines [12], Nearest Neighbor [13], classification trees, e.g.
Random Forest [15], or boosting techniques, e.g. AdaBoost
[14].
However, all these techniques have problems when there

is only a limited number or an asymmetric number of pos-
itive and negative feedback samples provided by the user.

There have been several attempts to overcome this. More
recent approaches to relevance feedback include Biased Dis-
criminant Euclidean Embedding [17] and Active Reranking
for Web Image Search [18]. However, all of these approaces
have only been applied to image datasets.

In video retrieval, most of relevance feedback approaches
have focused on pseudo-relevance feedback. In general,
pseudo-relevance feedback algorithms assume that a sub-
stantial number of video shots in the top of the ranking
are relevant [19]. The information associated with these
top-ranked pseudo-relevant shots is then used to update the
initial retrieval results.

In this paper, we propose a new method, denoted Fisher
Kernels Relevance Feedback (FKRF). We will show that we
can improve the performance of classical RF retrieval sys-
tems by using the Fisher kernel method. Furthermore, the
use of the Fisher kernel representation enables us to repre-
sent a complete video while retaining a form of temporal
information.

3. PROPOSED FISHER KERNEL

RELEVANCE FEEDBACK

3.1 Fisher Kernel Theory
The Fisher kernel were designed as a framework to com-

bine the benefits of generative and discriminative approaches.
The general idea is to represent a signal as the gradient of
the probability density function that is a learned generative
model of that signal. Intuitively, such Fisher vector rep-
resentation measures how to modify the parameters of the
probability density function in order to best fit the signal,
similar to the measurements in a gradient descent algorithm
for fitting a generative model. The Fisher vector is sub-
sequently used in a discriminative classifier. In this paper
we follow [2] and use a Gaussian Mixture Model (GMM)
followed by a linear SVM.

Let X = {x1, x2, ..., xT } be a set of T multimodal video
descriptors. Now X can be represented by its gradient vector
with respect to a Gaussian Mixture Model uλ with param-
eters λ:

G(X)λ =
1

T
▽λ log (uλ(X)) (1)

The gradient vector is, by definition, the concatenation of
the partial derivatives with respect to the model parameters.
Let µi and σi be the mean and the standard deviation of i’s
Gaussian centroid, γ(i) be the soft assignment of descriptor
xt to Gaussian i, and let D denote the dimensionality of the
descriptors xt. Gx

µ,i is the D-dimensional gradient with re-
spect to the mean µi and standard deviation σi of Gaussian
i. Mathematical derivations lead to [3]:

Gx
µ,i =

1

T
√
ωi

T
∑

t=1

γ(i)
xt − µi

σi

(2)

Gx
σ,i =

1

T
√
2ωi

T
∑

t=1

γ(i)

[

(xt − µi)
2

σi
2

− 1

]

(3)

where the division between vectors is a term-by-term op-
eration. The final gradient vector Gx is the concatenation
of the Gx

µ,i and Gx
σ,i vectors, for i = 1...K.



3.2 Proposed Fisher Kernel RF Algorithm
Our relevance feedback method works as follows. Using

a single video as query, we rank all videos using a nearest-
neighbor strategy. Then, the user selects from the top n
videos which ones are relevant or which ones are not, where
n is typically small (20 in our experiments). We learn a
generative Gaussian Mixture model from the first n retrieved
documents. Then we re-represent the top k videos using
a Fisher Kernel representation with respect to this GMM,
where k is typically large (2000 in our experiments). We only
consider the top k as it is unlikely that relevant videos are
ranked lower in the initial ranking. Afterwards, we train an
SVM on the Fisher vectors of the top n user labeled results.
We apply this SVM on the top k videos to obtain a final
ranking.
The algorithm is given in Algorithm 1. We now briefly

describe the details for re-representing the features after rel-
evance feedback using the Fisher Kernel and the subsequent
learning procedure.

Altering features after user’s feedback. After the ini-
tial query using nearest-neighbor search, we train a Gaussian
Mixture model on the features of the top n videos, regard-
less of their true relevance. In a practical application this
allows the training of the Gaussian Mixture model in the
background during the time that the user is giving feedback.
For optimization reasons we initialize the centroids with a
kmeans output. An important choice for the Fisher Kernel
representation is the number of clusters c. As for each clus-
ter the dimensionality of the representation doubles, for a
practical system the number of clusters has to be low. We
experiment with a value of c between 1 and 5 in Section 5.2.

The size of the Fisher Kernel representation is twice the
size of the original feature times the number of clusters c.
To make the Fisher Kernel computationally feasible, we first
apply PCA on the original feature vectors of the documents.
We compute PCA individually on each feature type and re-
duce the dimensions by 10%. After having obtained the
mixture model, we convert the original features of the top
k videos into the Fisher Kernel representation using Equa-
tions 2 and 3. For both the GMM clustering and the Fisher
projection we use the software obtained from [3].

Finally, we perform normalization on the Fisher vectors
as [2] has found this to significantly increase performance. In
our method we experiment with the following normalization
strategies: L1 and L2 normalizations, power normalization
(f(x) = sign(x)

√

α|x|), logarithmic normalization (f(x) =
sign(x)log(1 + α|x|)) and combinations of them.

Training - reranking step. We use the Fisher represen-
tations of the top n videos, along with the labels obtained
using feedback from the user, to train a two-class SVM clas-
sifier. SVMs are appropriate for relevance feedback as they
are relatively robust to the situation in which only few train-
ing examples are available. Indeed, SVMs have been success-
fully used in several RF approaches [12]. In our experiments,
we test two types of SVM kernels: a fast linear kernel and
the RBF nonlinear kernel. While linear SVMs are very fast
in both training and testing, SVMs with an RBF kernel are
more accurate in many classification tasks.

3.3 Frame Aggregation with Fisher kernel
Most of content based systems involve two main steps:

feature extraction and document ranking. The first step

Algorithm 1: The Fisher Kernels Relevance Feedback
Algorithm

Initial parameters:

Labeled Sample set: Xi and labels Yi;
Unlabeled Sample set: Xr;
SVM Classifier parameters (C, γ);
n: the window size;

Start:

do 10% PCA reduction for all multimodal features;

Altering features step:

Compute GMM centroids for Xi;
for x ⊂ Xi do

compute FK(x) = FK(x,GMM);
normalize FK(x);

Training - reranking step:

train SVM(C, γ) using FK features;

for x ⊂ Xr do
compute FK(x) = FK(x,GMM);
normalize FK(x);
compute h(x) = SvmConfidenceLevel(FK(x));

sort h(x) values;
show new ranked list according to h(x) values;

mainly consists of computing one feature per document that
needs to capture as many relevant characteristic for that
document category as possible. For video documents, most
of the approaches compute a feature for each frame, and
then aggregate all the features in one descriptor by com-
puting the mean, dispersion or other statistics over all the
frames. But, by aggregating these statistics in these ways,
the notion of time is lost. Alternatively, we can represent a
video by multiple vectors and to compute the distance be-
tween two sets of points using, for example, the Earth Mover
distance [24]. However, using such a metric involves a huge
computational cost for large databases.

By using the Fisher kernel representation, we obtain a
natural solution to the problem above. The Fisher Kernel
was originally designed to map multiple vectors into a fixed
length representation, and this approach is exactly what we
need for this problem. It takes advantage of the expressive
power of generative models to map sequences of features of
variable length, such as video sequences, into a fixed length
representation.

For cutting up the video into temporal fragments, one
approach is to divide the video document into frames and
to compute a visual descriptor for each video frame. How-
ever, for large multimedia databases the number of frames
is huge (25 frames per second and thousands of hours of
video footage) and this approach can create computational
problems. In order to efficiently browse through the signif-
icant video content, summarization is required [27]. So, we
extract a small collection of salient images (keyframes) that
best represent the underlying content [27].

We train the Gaussian Mixture model on the features of
the top n videos. Once the generative model is trained, for
every training sequence of feature vectorsXi = {x1;x2; ..;xT },
composed of T feature vectors we transform it into a vector
of fixed dimension. The only difference between the previous
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Figure 1: Image examples for several video genres. The
bottom images correspond to videos from the same genre
category, i.e. ”politics” (source blip.tv).

approach and this one regards on what data the GMM has
learned. Instead of using one global aggregated video fea-
ture, we will use more features per document. The resulting
Fisher kernel representation will have the same number of
dimensions. Experiments from Section 5.5 will show the
performance of temporal Fisher Kernels on the Relevance
feedback problem.

4. EXPERIMENTAL SETUP

4.1 Dataset
The validation of the proposed content descriptors is car-

ried out in the context of the MediaEval 2012 Benchmark-
ing Initiative for Multimedia Evaluation, the Video Genre
Tagging Task [6]. This task addresses the automatic cate-
gorization of web media genres used with the blip.tv plat-
form (see http://blip.tv/). For testing, we use the MediaE-
val 2012 Video Genre Tagging dataset consisting of 15000
sequences (up to 2000 hours of video footage), labeled ac-
cording to 26 video genre categories, namely: art, autos and
vehicles, business, citizen journalism, comedy, conferences
and other events, documentary, educational, food and drink,
gaming, health, literature, movies and television, music and
entertainment, personal of auto-biographical, politics, reli-
gion,school and education, sports, technology, environment,
mainstream media, travel, videoblogging, web development
and ”default” category (accounts for movies which cannot be
assigned to neither one of the previous categories).
The main challenge of this task is the diversity of videos

that contain high level concepts for videos genres, each genre
category has a high variety of video materials. Figure 1
illustrates image examples from the dataset.

4.2 Evaluation
In our experiments we consider the scenario that user feed-

back is automatically simulated from the known class mem-
bership of each video document (ground truth is provided
with the databases). This approach allows a fast and ex-
tensive simulation which is necessary to evaluate different
methods and parameter settings. Such simulations are com-

mon practice for RF [11] [12] [14].
To assess the retrieval performance, we use several mea-

sures. First, we compute the classical precision and recall.
Precision is the fraction of retrieved documents that are rel-
evant to the search (measure of false positives) and recall is
the fraction of the documents that are relevant to the query
and successfully retrieved (measure of false negatives). The
system retrieval response is assessed with the precision-recall
curves, which plots the precision for all the recall rates that
can be obtained according to the current document class
population. Second, to provide a global measure of perfor-
mance we determine the overall Mean Average Precision -
MAP as the area under the uninterpolated precision-recall
curve.

In our evaluation we systematically consider each docu-
ment from the database as a query document and retrieve
the remainder of the database accordingly. Precision, recall
and MAP are averaged over all retrieval experiments. Ex-
periments were conducted for various browsing top n, rang-
ing from 10 to 30 documents. For space and brevity reasons,
in the following we shall present only the results using the
top 20 videos per window. The general observations in this
paper hold for all values of n.

4.3 Content descriptors
For video descriptors we have used a broad range of de-

scriptors including: visual, audio and text. Competitive
results have been obtained using these descriptors on Me-
diaEval Genre Tagging task 2012 [6].

Audio features

Block-based audio features (11,242 values) [28] capture the
temporal properties of the audio signal. We choose a set of
audio descriptors that are computed from overlapping audio
blocks. On each block, we compute the Spectral Pattern
which characterizes the soundtrack’s timbre, delta Spectral
Pattern which captures the strength of onsets, variance delta
Spectral Pattern which represents the variation of the onset
strength over time, Logarithmic Fluctuation Pattern which
captures the rhythmic aspects, Spectral Contrast Pattern,
Correlation Pattern which compute the temporal relation of
loudness changes and timbral features: Local Single Gaus-
sian Model and Mel-Frequency Cepstral Coefficients. Se-
quence aggregation is achieved by taking the mean, variance
and median over all blocks.

Standard audio features (196 values) [29] [30] - we used a
set of general-purpose audio descriptors: Linear Predictive
Coefficients (LPCs), Line Spectral Pairs (LSPs), MFCCs,
Zero-Crossing Rate (ZCR), spectral centroid, flux, rolloff
and kurtosis, augmented with the variance of each feature
over a certain window (we used the common setup for cap-
turing enough local context that is equal to 1.28s). For
a clip, we take the mean and standard deviation over all
frames.

Visual descriptors

MPEG-7 related descriptors(1,009 values) [31] - we adopted
standard color and texture-based descriptors such as: Lo-
cal Binary Pattern (LBP), autocorrelogram, Color Coher-
ence Vector (CCV), Color Layout Pattern (CLD), Edge His-
togram (EHD), Scalable Color Descriptor (SCD), classic color
histogram (hist) and color moments. For each sequence, we
aggregate the features by taking the mean, dispersion, skew-
ness, kurtosis, median and root mean square statistics over



Table 1: Comparison between feature accuracy (MAP) using different metrics without RF.

Feature Manhatan Euclidian Mahalanobis Cosinus Bray Curtis Chi Square Canberra
Hog Features 17.02% 17.18% 17.07% 17.00% 17.10% 17.07% 16.67%

Structural Features 10.87% 10.55% 11.14% 2.18% 10.92% 11.58% 14.82%
MPEG 7 related 12.37% 10.85% 21.14% 08.69% 13.34% 13.34% 25.97%
Standard Audio Features 7.76% 7.78% 29.26% 15.28% 7.78% 8.04% 1.58%

Block-based audio 19.33% 19.58% 20.21% 21.23% 19.71% 19.99% 20.37%

Text Features 8.32% 7.15% 5.39% 17.64% 20.40% 9.83% 9.68%

all frames.

Global HoG (81 values) [32] - from this category, we com-
pute global Histogram of oriented Gradients (HoG) over all
frames.

Structural descriptors (1,430 values) - the structural de-
scription [33] is based on a characterization of geometric
attributes for each individual contour, e.g. degree of curva-
ture, angularity, circularity, symmetry and ”wiggliness”, as
proposed in [33]. These descriptors were reported to be suc-
cessfully employed in tasks such as the annotation of photos
and object categorization [34].

In this work, we decided not to use Bag of Words strate-
gies. In preliminary experiments we found that in order to
get results as good or better than the other visual features,
we need large dictionaries that create computational prob-
lems for the large dataset we use.

Text descriptors

TF-IDF (extracted with automatical speech recognition
algorithms ASR, with 3,466 values, provided by the MediaE-
val organizers [35]) - we use the standard Term Frequency-
Inverse Document Frequency approach. First, we filter the
input text by removing the terms with a document frequency
less than 5%-percentile of the frequency distribution. We
reduce further the term space by keeping only those terms
that discriminate best between genres according to the 2-
test. We generate a global list by retaining for each genre
class, the m terms (e.g. m = 150 for ASR) with the high-
est 2 values that occur more frequently than in complement
classes. This results in a vector representation for each doc-
ument that is subsequently cosine normalized to remove the
influence of the length of transcripts.

We used in our framework eight combinations of multi-
modal video descriptors: Visual (1 - MPEG-7 related de-
scriptors, 2 - Hog Features, 3 - Structural descriptors, 4 -
Combination of All Visual descriptors), Audio (5 - Stan-
dard audio features, 6 - Block-based audio descriptor), Text
descriptors (7 -TF-IDF - ASR-based), and 8 - combination
of all of them. All the visual and audio descriptors are nor-
malized to L∞ norm, and text descriptors to cosine normal-
ization.

5. RESULTS
In the following subsections, we present our experiments.

The first experiment (Section 5.1) motivates the choice of
the best metric that provides the best accuracy for each fea-
ture. In the second experiment (Section 5.2), we study the
influence of Fisher Kernel parameters on system’s accuracy,
and in Section 5.3 we compare our work with state-of-the-
art techniques. In Section 5.4 we compare our method with
a Fisher Kernel representation by learning a GMM on all
the data and in Section 5.5 we illustrate the advantage of
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Figure 2: The influence of GMM centroids number on sys-
tem performance for T=1.

Fisher Kernels approach on video RF using more than one
descriptor per video document.

5.1 Evaluating feature metrics
Some distance measures are better adapted to the struc-

ture of the descriptor than others [22]. In this work we have
tested the performance of several metrics. We made the as-
sumption that a better initial performance will generate a
better relevance feedback algorithm performance [22].

We tested a broad variety of metrics [23]: Euclidean (L2),
Manhattan (L1) (particular cases of the Minkovski distance),
probabilistic divergence measures: Canberra [26]; intersec-
tion family: Cosine Distance, Chi-Square distance used in
machine learning and data clustering and Mahalanobis [25].
The performance of metrics is presented in Table 1. These
experiments were performed on the entire MediaEval 2012
dataset.

We conclude that each feature has its own preferred met-
ric. In the rest of our experiments we use for each feature
its best metric as indicated in Table 1 (bolded results).

5.2 RF using Fisher Kernels
In this experiment we study the influence of Fisher Kernel

parameters on the system’s performance.
We first analyze the influence of the number of Gaussian

centroids. Figure 2 presents the variation of MAP using a
different number of Gaussian centroids. It can be observed
that the best results are obtained using only a single Gaus-
sian centroid. In this case the size of Fisher Kernel descrip-
tors will be 2 times bigger than the document descriptor.

Secondly, we presents the influence of Fisher normaliza-



Table 2: The influence of different normalization algorithms
on system’s performance (mean average precision values).

h
h
h
h
h

h
h
h

h
h
h
h

Normalization

Features
Visual Audio Text

Without normalization 37.25% 38.68% 31.13%

L1 36.82% 37.97% 29.83%

L2 39.22% 41.94% 30.51%

Log Norm 38.61% 42.01% 35.07%
PN 38.51% 41.37% 34.93%

PN + L2 Norm 39.20% 42.98% 30.12%

PN + L1 Norm 39.46% 43.23% 31.71%

tion strategies on system performance. In [3], it was demon-
strated that some normalization strategies can improve the
performance of Fisher Kernels. The results are presented in
Table 2.
It can be observed that using the combination of L1 nor-

malization - alpha normalization we obtained the best re-
sults for visual and audio features, while the highest perfor-
mance for text features is obtained with logarithmic normal-
ization. Another observation is that using the L1 normal-
ization alone, the results are lower than in the case when L1
is used in combination with other normalizations.
In order to compare our algorithm with other relevance

feedback approaches, we have selected the settings that pro-
vide the greatest improvement in performance: one GMM
centroid, L1 normalization with alpha normalization for au-
dio and visual descriptors and logarithmic normalization for
text descriptors. We also used 2 SVM kernels: a linear SVM
classifier and a nonlinear RBF kernel.

5.3 Comparison to state-of-the-art techniques
In the following, we compare our approach against other

validated algorithms from the literature, namely: the Roc-
chio algorithm [9], Relevance Feature Estimation (RFE) [11],
Support Vector Machines (SVM) [12], AdaBoost (BOOST)
[14], Random Forests (RF) [15] and Nearest Neighbor [13].
Figure 3 presents the precision-recall curves after rele-

vance feedback for different descriptor categories. Gener-
ally, all RF strategies provide significant improvement in
retrieval performance compared to the retrieval without RF
(see the dashed black and blue lines in Figure 3). Better
performance is obtained with audio descriptors, while text
and visual descriptors have similar performance.
The highest performance is obtained using standard audio

descriptors, with an increase of MAP from 29.35% (without
RF) to 46.34% and with all combined features from 30.29%
to 46.80%.
We present in Table 3 the MAP values for different fea-

tures combinations. The FKRF approach has the highest
values for most of the cases, except for the combination of
all visual descriptors, where the random trees RF achieve
the highest performance values. The highest increase in sys-
tem performance is obtained using MPEG 7 descriptors, in-
crease of 4 MAP percents (from 40.80% using FKRF RBF
to 36.85% with random forests) and block based audio (from
43.96% using FKRF Linear to 39.87% using Boost RF). At
the other end, the smallest increase in performance is ob-
tained for text features (from 45.80% using FKRF RBF to
45.31 using random forests).
In most of the cases, RFE and random forests provide

good results, but our approach is better. We conclude that
the proposed approach improves the retrieval performance,

Table 4: Comparison between FKRF RBF on all data (T=1)
and RFRF RBF (T=1) (MAP values).

Feature FKRF for all
data

FKRF RBF

Visual Features 34.02% 38.23%
Standard Audio 38.25% 46.34%
Text 32.37% 35.14%

outperforming some other existing approaches, e.g. Rocchio,
RFE, SVM, Random Trees, etc.

5.4 Fisher Kernel representation on all data
We could also generate a Fisher Kernel representation by

learning a GMM on all the data. A valid question is there-
fore: do we obtain good results because the Fisher Kernel
representation is in general more powerful than our initial
features, or are our performance improvements caused by
altering the features with respect to the top n results? In
the former case, we can just alter the features once offline,
which would speed up computation. Yet if this is the case
we would just prove that the Fisher kernel representation is
more powerful than our initial features, independent of our
relevance feedback settings.

To test this, we train a GMM on all the feature vectors of
the whole dataset, and represent all videos as Fisher vectors
with respect to this global mixture model. We use these
features in the SVM RF framework and compare this with
our proposed Fisher Kernel RF framework. Notice that the
only differences between these two systems are on what data
the GMM is learned and when the features are changed to
the Fisher kernel representation.

GMM on all data drastically reduce the system perfor-
mance. The results are presented in Table 4. It can be ob-
served that the performance drops with 4 percents for visual
features and with more than 8 percents for audio features.

We conclude that altering the data based on the top n
videos is crucial for obtaining good performance. This vali-
dates our claim that the Fisher Kernel is particularly suited
for use in a Relevance Feedback application.

5.5 Frame Aggregation with Fisher kernel
In the following, we will show the improvements using

FK approach on RF, when we use more then one feature
per video document. Because these are preliminary experi-
ments, we used in this work only two types of visual descrip-
tors: HoG descriptors and MPEG 7 related descriptors, that
are more representative for the visual information.

For this experiment, we extract a small collection of salient
frames using [27], and compute a visual feature for each
frame. Because, we now have more data, we can learn more
complex GMM. Therefore, we estimate that the optimal
number of centroids used by the Fisher Vectors is higher
than one. Indeed, Figure 4 presents the variation of MAP
using a different number of Gaussian centroids. It can be
observed that the best results are obtained using 6 to 10
number of centroids.

In the end, we present in Table 5 a comparison between
the MAP values of previous global FKRF approach and the
frame aggregation FKRF approach. The frame aggregation
Fisher kernel representation for RF tends to provide better
retrieval performance in all cases with more than 4 percents
increase of performance (from 29.59% to 32.87% for HoG
features and from 40.80% to 45.43% from MPEG 7 related



Table 3: Comparison with state of the art algorithms (mean average precision values).

Feature Without RF Rocchio NB BOOST SVM RF RFE FK Linear FK RBF
HoG 17.18% 25.57% 24.18% 26.72% 26.49% 26.89% 27.5% 29.46% 29.59%
Structural 14.82% 21.96% 23.73% 23.63% 24.62% 24.69% 23.91% 26.28% 23.96%

MPEG 7 25.97% 30.88% 34.09% 32.55% 32.90% 36.85% 31.93% 40.50% 40.80%
All Visual 26.18% 32.98% 34.25% 35.99% 36.08% 42.28% 32.43% 41.33% 42.23 %

Standard Audio 29.26% 32.71% 34.88% 32.88% 38.58% 40.46% 44.32% 44.80% 46.34%
Block Based Audio 21.23% 35.39% 35.22% 39.87% 31.46% 33.41% 31.96% 43.96% 43.69%

Text 20.40% 32.55% 26.91% 26.93% 34.70% 34.70% 25.82% 34.84% 35.14%
All Features 30.29% 37.91% 39.88% 38.88% 40.93% 45.31% 44.93% 46.43% 46.80%
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Figure 3: Precision-recall curves for different content descriptors and combinations 1 - Combination of All Visual descriptors),
2 - Standard audio features, 3 - Text descriptors and 4 - combination of all features.
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Figure 4: The influence of GMM centroids number on sys-
tem performance using frame aggregation FKRF approach.

Table 5: Comparison between global FKRF and frame ag-
gregation FKRF (MAP values).

Feature FKRF
Linear
(T=1)

FKRF
RBF
(T=1)

Frame aggre-
gation FKRF
Linear

Frame ag-
gregation
FKRF RBF

HoG 29.46% 29.59% 32.12% 32.87%
MPEG 7 40.50% 40.80% 44.69% 45.43%

descriptors). Another interesting result is that using MPEG
7 related descriptors alone, with temporal information, we
achieve similar performance to audio features.
We conclude that frame aggregation Fisher Kernels ap-

proach improves the video retrieval performance and sur-
passes the global Fisher Kernel approach.

5.6 Computational Efficiency

All the experiments were done on a single core of a 3.00
Ghz Intel Core Duo E8400 processor. Using Fisher Kernel
in combination with Linear SVM and global video features,
we generate a RF iteration in less than half of second. By
aggregating all the frames with Fisher kernels, the execution
time of a RF iteration is near to 2 seconds.

We conclude that this represents a reasonable waiting time
for users in a real system scenario.

6. CONCLUSIONS
In this paper we have proposed a new method of relevance

feedback using the Fisher Kernels. We addressed relevance
feedback techniques in the context of video retrieval and dis-
cussed a new approach that combines the generative models
with discriminative classifiers (SVM’s) for relevance feed-
back problem, using Fisher Kernels theory.

Tested on a large scale video database (MediaEval 2012)
and using several descriptors approaches (visual, audio and
textual features) our FKRF approach improves the retrieval
performance, outperforming other existing Relevance Feed-
back approaches, such as: Rocchio, Nearest Neighbors RF,
Boost RF, SVM RF, Random Forest RF and RFE.

Additionally, we present a novel method to capture tem-
poral information by using the Fisher Kernel to use more
than one feature per video. The experiments with visual de-
scriptors showed that using more features vectors to describe
a video document, instead of only one, the performance is
drastically improved, from 40.80 to 45.83 for MPEG 7 re-
lated descriptors and from 29.59% to 32.87% for HoG fea-
tures. We showed that we do not need large number of
clusters to train the FK framework, we achieve the best per-
formance with only 5-10 clusters. This makes the proposed
approach implementable for a real time RF approach.

In future work we will adapt the method to address a
higher diversity of video categories (use of the Internet).
Futhermore, we want to extend the Fisher kernel to other
modalities, namely text and audio, and to use elaborated



spatio-temporal features.
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