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ABSTRACT

Classical Bag-of-Words methods represent videos by
modeling the variation of local visual descriptors through-
out the video. In this approach they mix variation in time
and space indiscriminately while these dimensions are fun-
damentally different. Therefore, in this paper we present
a novel method for video representation which explicitly
captures temporal variation over time. We do this by first
creating frame-based features using standard Bag-of-Words
techniques. To model the variation in time over these frame-
based features, we introduce Hard and Soft Cluster Encoding,
novel techniques to model variation inspired by the Fisher
Kernel [1] and VLAD [2]. Results on the Rochester ADL [3]
and Blip10k [4] datasets show that our method yields im-
provements of respectively 6.6% and 7.4% over our baselines.
On Blip10k we outperform the state-of-the-art by 3.6% when
using only visual features.

Index Terms— modeling temporal variation in video,
temporal Fisher Kernel encoding, temporal VLAD encoding,
video classification.

1. INTRODUCTION

Videos change over time. They generally consist of different
shots which vary wildly in appearance, while within a single
shot the changes from frame to frame are more subtle. For
automatic video classification, ideally such variation should
be modeled. In this paper we propose a novel video represen-
tation in which we model the temporal variation in a video.

Currently, there are two main approaches for modeling
video: (1) Bag-of-Words models [5, 6, 7] sample spatio-
temporal video patches at specific locations in the video, from
which local appearance or motion descriptors are extracted.
Then techniques such as the Fisher Kernel [1] are used to
model or encode the variation of these descriptors, where
temporal and spatial variation is indiscriminately mixed to-
gether. This seems suboptimal since spatial and temporal
dimensions are fundamentally different; (2) Some works
model the temporal order within a video by using Hidden
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Markov Models [8, 9]. However, such models are generally
slow at both training and testing time.

In this paper we take another approach. Unlike Bag-of-
Words, we want to explicitly model the variation in time.
However, instead of modeling temporal order, we only model
the temporal variation. In particular, we first create frame-
based features which model the appearance or motion at a
specific point in time. Afterwards, we model the variation
of these frame-based features, which means the temporal
order is lost but we explicitly model the variation in time.
The resulting representation is richer than the classical Bag-
of-Words approach, while at the same time resulting in a
representation which is fast to create and easy to use. We
demonstrate the benefits of our framework on two datasets:
ADL Rochester [3] for activity recognition and Blip10k [4]
for genre classification.

The approach of modelling only the temporal variation
was earlier proposed in [10]. In this paper, we improve their
work in two important ways: (1) whereas [10] used global
frame features (i.e., one frame is described by a single large
HoG/HoF descriptor), we use the more powerful Bag-of-
Words features to represent a single frame; (2) furthermore,
we introduce two novel temporal encoding techniques which
are effective in modeling the variation of frame-based Bag-
of-Words features.

2. RELATED WORK

The current dominant method of creating video features is the
Bag-of-Words method [11, 12]. This approach samples local
spatial-temporal video patches on either space-time interest
points [5, 13], a regular grid [7, 14], or dense trajectories [6].
From these patches local descriptors are extracted such as
Histograms of Oriented Gradients (HoG) [15], Histograms
of Optical Flow (HoF) [5, 16], and Motion Boundary His-
tograms (MBH) [16]. These descriptors are subsequently ag-
gregated into a fixed length representation by counting code-
words of a visual vocabulary (e.g., [11, 12, 17]), the Fisher
Kernel [1], or VLAD [18]. These approaches all model the
variation of the descriptors, but make no distinction between
variation in time and variation in space. For videos consist-
ing of multiple, wildly different shots, this is likely subopti-
mal. In this paper, we use these classical techniques to create



frame-based Bag-of-Word features. However, afterwards we
perform a separate aggregation step to model the variation of
these frame-based features in time. This means our represen-
tation explicitly models temporal variation.

Several approaches explicitly model the temporal order of
frames within a video by using Hidden Markov Models [8, 9,
19]. Revaud, et al. [20] encode frame descriptors jointly in the
frequency domain while keeping the temporal order. Other
work employs temporal rules with high-level concepts [21].
Such work is usually time consuming, since a pre-temporal-
segmentation or a temporal constraint is required to be ap-
plied. In this paper we propose to drop the temporal order but
keep the temporal variation. This leads to a simpler yet faster
architecture with excellent performance.

3. METHOD

We create video representations in a two-step sequence: (1)
we use a standard Bag-of-Words method to create frame-
based features. These features model the spatial variation of
local descriptors in the video at a specific time; (2) we use
standard and new methods for aggregating features within a
video in order to model the variation of frame–based features
in time.

3.1. Creating Frame-based Visual Features

We use standard methods to create frame-based visual fea-
tures. As local visual descriptors, we extract densely sampled
HoG and HoF features using the software1 and recommended
settings of [7].

We experiment with three types of aggregation methods:
hierarchical k–means (HKmeans) plus codebook assignment
(e.g., [7, 12]), the Fisher Kernel [1], and VLAD [2], for which
we use the VLfeat toolbox2 [22]. Importantly, we use these
methods to create frame-based features. That is, in contrast
to normal approaches which use Bag-of-Words to represent
all descriptors in the video, we create a representation at each
point in time for which we have descriptors3.

For all Bag-of-Words methods we use the recommended
settings. We normalize our frame-based Bag-of-Words rep-
resentations for HKmeans using the square root followed by
L1. For VLAD and FK we apply the square root while keep-
ing the sign followed by L2.

For future reference, let us represent a set of N videos
as {V1, V2, ..., VN}. We denote the number of frame-based
features in a video Vj by ηj . For the mth time–stamp (m ∈
{1, ..., ηj}) of video Vj , φj,m represents the frame-based vo-
cabulary assignment.

1http://huppelen.nl/publications/RealtimeHofHogReleaseV1.0.zip
2http://www.vlfeat.org
3Local descriptors actually span multiple frames but have a time–stamp

in the middle of these frames. We only aggregate features with equivalent
time-stamps. So the term “frame-based” features is not 100% accurate but it
captures the spirit of our work the best.

3.2. Temporal Encoding of Frame-based Features

We want to explicitly capture temporal variation over the
frames within a video. We use two classical methods to en-
code the temporal variation over frame-based features, the
Fisher Kernel and VLAD. Then we propose a novel method
inspired by these models that outperforms both.

Temporal Fisher Kernel Encoding (TFK). We use the
Fisher Kernel [1] to encode the temporal variation over frame-
based features. This means that for each video Vj all frame-
based features φj =

⋃ηj
m=1{φj,m}, are assigned to Nc clus-

ters with a Gaussian Mixture Model (GMM).
Let µi and σi be the mean and the standard deviation of

the ith Gaussian component, γ(i) the soft assignment of φj,m
to Gaussian i, and ωi the mixture weight of Gaussian i. Let
D denote the dimensionality of φj . Now G

φj

µ,i and Gφj

σ,i are
respectively the D-dimensional gradient for the mean (µi) and
standard deviation (σi) of Gaussian i. Mathematical deriva-
tions [1] lead to:
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where the divisions between vectors is a term-by-term oper-
ation. The final gradient vector Gφj is the concatenation of
the Gφj

µ,i and Gφj

σ,i vectors, for i = 1, . . . , N and has a dimen-
sionality of 2DN . Following [1], we normalize this vector
by taking the square root while keeping the sign, followed by
L2.

Temporal VLAD Encoding (TVLAD). VLAD encoding
[2] is introduced as a simplified alternative to FK.

In our VLAD temporal encoding, the frame-based fea-
tures φj =

⋃ηj
m=1{φj,m} for video Vj are assigned to

Nc = {c1, c2, ..., cn} vocabularies that are obtained by using
K-means. Features are assigned only to the nearest cluster
centre: κm(i) = 1 if the feature belongs to cluster m, and 0
otherwise. This yields:

R
φj

µ,i =

ηj∑
m=1

κm(i) [φj,m − µi] (3)

The final VLAD vector Rφj is the concatenation of Rφj

µ,i for
i = 1, . . . , N and has a dimensionality ofDN . We normalize
this vector by taking the square root while keeping the sign,
followed by L2, as recommended by [2].

Temporal Hard Cluster Encoding (THC). The VLAD
and Fisher Kernel both alter the feature space with respect to
the cluster centres. While this has proven to work well on lo-
cal descriptors, it is unclear if that is good for frame–based
features as well. When our frame–based features are cre-
ated using a codebook assignment, the resulting features are
histograms. For such histograms, measuring distances using



Histogram Intersection (or, equivalently, Manhattan distance)
is natural and has proven to work well (e.g., [7]). Hence, we
propose an alternative encoding which does not alter the orig-
inal feature space, but which accumulates the features within
each cluster. As in VLAD, we use K-means to create a vi-
sual vocabulary and let κm(i) denote the hard assignment to
a cluster. Let Nm denote the number of assigned features to
cluster m. Now we model the average of the features within
a cluster as:

S
φj

µ,i =
1

Nm

ηj∑
m=1

κm(i)φj,m (4)

We model the standard deviation of these features as:

S
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As before, the final representation is obtained by concatena-
tion. Note that unlike VLAD and Fisher, these formulas do
not use the location of the cluster centre of the original k–
means clustering. We normalize using the L1 norm, as this
preserves frame-based features which are based on codebook
counts.

Temporal Soft Cluster Encoding (TSC). The assign-
ment of a feature to a single cluster may be quite crude,
especially when there are few clusters. Hence, we also pro-
pose a soft assignment version of our encoding scheme, as
it is also done in the Fisher Kernel and in [17]. For this soft
assignment γm(i), we assume that all clusters created by the
k–means clustering algorithm have an isotropic covariance
σ = λID, where λ is a parameter we optimize and ID is the
D-dimensional identity matrix. This leads to:
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As before, we normalize using the L1 norm.

4. EXPERIMENTAL SETUP

We evaluate our temporal encoding schemes on the Rochester
ADL [3] and Blip10k [4] datasets. We first describe these
datasets and then give details on our experimental setup.

4.1. Datasets

Rochester Activities of the Daily Living (ADL) dataset.
This dataset consists of ten complex fine-grained human ac-
tivities. Each activity is performed three times by five differ-
ent people, with different ethnicity, appearance and manner
of performing the actions. Each clip is in the range of 3-50s.
In total the dataset contains 150 videos.

Blip10k dataset. Blip10k contains videos from Blip.tv
[4]. The dataset contains 14832 episodes with the running
time of 3288 hours. Each video is labeled according to 26 web
specific video genre categories, e.g., art, autos and vehicles,
business, comedy, etc. The dataset was used for the 2010–
2012 MediaEval benchmarking campaigns [4].

4.2. Experimental Setup

Baseline. Our baseline uses the simplest temporal encoding
of frame-based features. We aggregate by taking the mean
and standard deviation of all features in a video. So the base-
line models the temporal variation by a single Gaussian dis-
tribution. Note that this corresponds to taking a single cluster
for our THC and TSC encodings.

Temporal encodings. We model the distribution of our
frame-based features using 5 different Temporal encodings:
(i) Hard Cluster Encoding (THC) (ii) Soft Cluster Encoding
(TSC) (iii) Fisher Kernel Encoding (TFK) [1] (iv) VLAD En-
coding with the kmeans-based vocabulary (TVLAD-K) [2]
and (v) VLAD Encoding with the GMMs-based vocabulary
(TVLAD-G) [23].

Optimization of λ. For the TSC encoding, λ is cho-
sen from λset =

{
10−5, 10−4, 10−3, 10−2, 10−1

}
to pre-

serve the softness of the representation using an inner-loop
cross-validation over the training data. For Blip10k and
Rochester ADL we found the optimal values to be respec-
tively λ = 10−2 and λ = 10−4.

How many clusters for temporal encoding. This is one
of the main questions of this paper. We vary the number of
clusters from 1 to 5. Preliminary experiments showed no sig-
nificant improvements for more clusters, while more clusters
significantly increase the dimensionality of our video repre-
sentations (it scales linearly, but initial dimensionality is al-
ready substantial).

5. RESULTS AND DISCUSSIONS

Rochester ADL dataset [3]. We first perform our evalua-
tion on the ADL dataset using leave-one-person-out cross-
validation, a standard procedure for this dataset. We have
evaluated all the possible combinations of frame-based
features, temporal encoding approaches and SVM kernels
(Linear, RBF, Histogram Intersection), but given the space
limitation, we only present the most relevant results. Fig-
ure 1(a) shows a comparison between several temporal
encoding methods, where our frame-based features are
HOF+HKmeans. Note for the SVM kernel, we selected
for each method its best kernel: a linear kernel for VLAD and
FK, corresponding to recommendations of [1, 2]; the His-
togram Intersection kernel for THC and TSC as anticipated
in Section 3.2.

First of all, we observe that all temporal encodings benefit
from having multiple clusters. Intuitively, this means that the
visual variation in the videos over time is too high to be cap-
tured by a single cluster only. However, the classical VLAD



(a) (b) (c)

Fig. 1: Experiments on the Rochester ADL dataset: (a) the performance of different encoding approaches with a fixed BoW extraction method;
(b) the performance when using a fixed encoding method (TSC) and different frame-based representations. The performance using the best
pipeline on the Blip10k dataset is shown in (c). All the graphs are shown when the vocabulary size changes from 1 (no temporal variation) to
5 (highest temporal variation).

Table 1: Accuracy results for different approaches stating explicitly
the used features. For the Blip10k dataset, V denotes visual features.
The results obtained by our approaches are depicted in bold.

Rochester ADL dataset
Features Acc.
Our method-HoF 94.6%
Our Baseline-HoF 88.0%
HoF+HoG [24] 88.6%
HoF+HoG [25] 85.0%
HoF [26] 80.0%
HoF+FG+PoseDets [27] 98.8%
HoF+PoseDets[10] 97.3%
HoF+HoG+ContextFtrs [25] 96.0%
KPT+color+FaceDets [3] 89.0%
HoF+HoG+KPT [28] 82.6%

Blip10k dataset
Features Acc.
Our method-HoG (V) 49.6%
Our Baseline-HoG (V) 42.2%
G-HoG+Color (V) [10] 46.0%
Color+RgbSIFT (V)[4]4 35.0%
Audio+Video [10] 55.0%
Audio [10] 47.5%
Audio [4]4 19.2%

and Fisher Kernel encodings do not work well on the frame-
based Bag-of-Words features: these are worse than the base-
line which models the frame-based features by a single Gaus-
sian distribution. Still, our novel Soft Cluster Encoding yields
significant improvements: accuracy goes up from 88.0% to
94.6%, an improvement of 6.6 percentage points in accuracy.

In the next experiment, we keep the best temporal encod-
ing method, i.e., Soft Cluster Encoding, but instead change
the frame-based features. Here we create frame-based fea-
tures not only using HKMeans encoding, but also using
VLAD and Fisher Kernels. The results in Figure 1(b) show
that for all frame-based features the temporal encoding im-
proves the accuracy by 3-7%. We can also note that HKmeans
are the best frame-based features.

We also compare our results with the state-of-the-art in
Table 1. The best results are obtained by methods which
use complex features such as Body-Parts [10, 27] or by a
method which models contextual interaction between interest
points [25]. However, if we compare our results to approaches
relying only on fast local visual descriptors, we obtain signif-
icantly better results: the best method [24] has 88.6% using
both HoG and HoF, similar to our baseline. In contrast, we

4The results presented for [4] are the best results reported in the MediaE-
val competition.

obtain 94.6% accuracy using only HoF. This shows that our
explicit coding of temporal variation is very effective.

Blip10k [4]. Since the Blip10k dataset is huge, we only
evaluate the framework that gave the best results on the
Rochester ADL dataset. We replaced however the HoF de-
scriptors with HoG descriptors to reduce the computation
time. Consequently, as frame-based features we have a BoWs
representation using HoG descriptors modeled by a HK-
means codebook. We model the temporal variation using
Soft Cluster Encoding.

The results are calculated by mean Average Precision
(mAP) which is a standard evaluation metric on Information
retrieval tasks including the Blip10k genre retrieval task. Re-
sults are presented in Figure 1(c). As before, the results go
up drastically by properly modeling the temporal variation.
Results improve from 42.2% to 49.6%, an increase of 7.4
percentage points in mean Average Precision.

Table 1 shows the comparison with the state-of-the-art.
Here, the best results are obtained by [10] while using a com-
bination of visual and audio features. However, for visual
features only, we outperform [10] by 3.6%, even if we use
fewer visual features. We conclude that our explicit modeling
of temporal variation in video is very effective.

6. CONCLUSION

We presented a framework in which we explicitly model vari-
ation in time in video. First we create frame-based features
based on Bag-of-Words. For modeling their variation in time
(but not their order) we introduced Hard and Soft Cluster
Encoding, novel encoding techniques inspired by the Fisher
Kernel and VLAD. Results show significant improvements
of respectively 6.6% and 7.4% accuracy over our baselines.
Furthermore, comparing our results on the Rochester ADL
dataset to other articles which use only local visual HoG and
HoF descriptors, we show accuracy improvements of 6%. On
Blip10k, we outperform the state-of-the-art when using only
visual features by 3.6%.
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