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Abstract

A methodology for the detection and geometric char-
acterization of groups of segments is introduced. One
set of groups focuses on a precise geometric charac-
terization of the alignment of two and four segments;
and on a geometric characterization of shapes up to
five corners, whose outlines are obtained from iso-
contours. Another set of groups focuses on a loose
geometric characterization of three or more segments.
The grouping processes occur relatively fast as only
keypoints are used, such as the segments end- and
midpoints. The grouping output is tested in an im-
age classification task, evaluated on three image col-
lections (Urban&Natural, Landuse and Caltech 101),
whereby a structural as well as a statistical form of
representation is tested. The classification accuracy
is comparable to other approaches.

Keywords: perceptual organization, feature repre-
sentation, structural, image classification

1 Introduction

Perceptual organization was once believed to be a
keystep in a systematic scene reconstruction, which
would lead to a semantic scene interpretation (Lowe,
1985; Witkin and Tenenbaum, 1983; Sarkar and Boy-
er, 1993; Mohan and Nevatia, 1992). But the ap-
proach has lost its momentum for two reasons: one
is that it has become clear that for the ’mere’ pur-
pose of classification for instance, an accurate scene
reconstruction is not necessary, e.g. not all structural
relations are necessary to ’just’ classify image content,
e.g. (Oliva and Torralba, 2001; Renninger and Malik,
2004); a second reason is that the input to perceptu-
al grouping, namely appropriately partitioned con-
tour segments, was never properly developed. The
latter was addressed in our previous study on curve
partitioning. In this study, we develop grouping pro-
cedures, that group two and more segments and we

propose descriptors for their representation. We ap-
ply the methodology to the task of image classifica-
tion and demonstrate that it almost performs as well
as other methods.

The following methodology is based on a rather ex-
haustive geometric parameterization of the segments’
alignments. This may raise some skeptisism as it
seemingly lacks a compact formulation, but for the
goal of complete image understanding such a descrip-
tion is desired in any case. As we intend to exploit
the parameters for the task of semantic image clas-
sification, one may further wonder if the diversity of
parameters is indeed necessary for the mere purpose
of semantic classification. We believe, that this issue
is underestimated by recent classification approach-
es: even the task of semantic classification may re-
quire a more specific preprocessing than for instance
the mere histogramming of intensity gradients; yet it
may not require the ’perfect’ perceptual organization
as some of the early approaches of scene classification
sought. In some sense, we present an intermediate
form, a perceptual organization that is just sufficient
for classification, but for detailed image understand-
ing it required further analysis, for which however our
methodology is an ideal starting point.

1.1 Previous Grouping

Following Sarkar and Boyer’s proposal for a classi-
ficatory structure, one can distinguish between four
levels of groupings for 2D organization (Sarkar and
Boyer, 1993): the signal, the primitive, the structural
and the assembly level. The signal level organizes
pixels or interest points and can aid texture analy-
sis for instance; the primitive level groups edgels into
contours and leads to the segmentation of contour
and/or region boundaries; the structural level orga-
nizes contour segments into groups such as corners,
polygons, closed regions, etc; the assembly level iden-
tifies arrangements of the structural-level groups. As
our study focuses on the structural level only, we re-
view only studies of that level, namely 2D groupings
for segments.

Lowe had developed a set of groupings such as ver-
tices (intersecting segments) and clusters of parallel
segments and exploited them as pointers to deter-
mine the exact pose of an 3D object (Lowe, 1985).
Mohan and Nevatia designed a system (Mohan and
Nevatia, 1992), called CANC2, “to handle scenes of
unknown curved objects imaged from arbitrary view-
points” (p. 616); it is assumed “that the scene is
composed of opaque surfaces” (p. 628). The fea-
tures they extract is a “hierarchy of collated features
[...] suitable for handling objects whose projected sur-
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faces can be described by combinations of ribbons”
(p. 620). Clearly, their underlying vision is to recon-
struct the outlines of scene surfaces. We elaborate on
their study as it is closest to our grouping goals and
to the methodology presented here.

CANC2 begins with contour detection, possibly at
the finest scale only - judging by their figure 9, al-
though their figure 11 suggests that contours from
multiple scales were obtained (authors are not explic-
it on that). Contour segments are then grouped ex-
ploiting the cocurvilinearity grouping principle (con-
sisting of the combination of the continuity and prox-
imity principle) and then partitioned into smooth
curves at curvature extremas. The grouping so far
can be assigned to the signal and primitive level (ac-
cording to Sarkar and Boyer’s nomenclature).

On a structural level, CANC2 analyses the sym-
metric axis for each pair of curve segments. First-
ly, curves are pairwise analyzed, whereby only those
pairs are considered that fulfill two conditions, name-
ly minimal length ratio and minimal overlap. The
selected curve pairs are called symmetries and for
each pair a few symmetric points are computed that
represent their symmetric axis. The symmetries are
then further selected by a constraint satisfaction net-
work that analyses various ’mutual’ characteristic-
s between symmetries. At the end of this selection
step, ’u axes’ are formed. Symmetries and u-axes are
then combined to detect ribbons (enclosed regions).
A ribbon is abstracted by a number of structural pa-
rameters such as its width, length, orientation, etc.

CANC2 was specifically applied to the tasks of im-
age segmentation and stereo matching. The system
pursues what one could term a perfect reconstruc-
tion. But for the purpose of image classification, the
’mere’ assignment to a category label, this perfect re-
construction is too costly and not suitable for other
scenes (that contain other types of structures).

Later work in this direction refined some of the
grouping methodology. For instance Jacobs develope-
d a grouping algorithm that concentrated in partic-
ular on convex groupings (any non-concave polygon)
(Jacobs, 1996). This type of grouping can be under-
stood as a more general form of closure, e.g. as a clo-
sure of multiple curves. Borrar and Sarkar compare
various structural grouping algorithms on an aerial
image collection (Borra and Sarkar, 1997). Iqbal and
Aggarwal designed a system, which detects group-
ings that are typical for large man-made objects such
as buildings, towers, bridges and other architectural
objects (Iqbal and Aggarwal, 2002). Their system
extracts for instance L features and U features and
determines their statistics for each image. The sys-
tem is applied on high resolution images (512 pixels

and larger for each side) in an image-retrieval task.

In the studies mentioned so far, the diversity of
extracted groups have been rather limited and the
comparison between structures is not always explic-
itly addressed. For instance, in Jacobs’ study it is un-
clear how to compare the convex groupings. In con-
trast, recent object-detection studies using contour
segments have addressed these issues slightly more e-
laborate, but their extent of grouping remains rather
limited. For instance, Ferrari et al. use only pairs of
adjacent segments and use them as templates (Ferrari
et al., 2008; Ferrari et al., 2010); Zhu et al. consider
any pair - not just adjacent (local) but also distant
(global) ones - for finding the outline of objects but do
not exploit them for matching (Zhu et al., 2008). We
concur with Zhu et al.’s assumption that any pair is
potentially category-specific, and while this assump-
tion aggravates the combinatorial challenge, the selec-
tion of hypothesized groups requires correspondingly
stringent criteria.

1.2 Overview

Commonly detected groups are pairs of segments and
clusters of segments. With the term ’cluster of seg-
ments’ we specifically mean now three or more seg-
ments; they can be aligned starwise as in a vertex fea-
ture (’Y’, ’+’,...) or more generally formulated they
can be aligned with their pairwise intersection points
clustered; or they can be aligned in parallel. We had
initially attempted to detect vertex features specifi-
cally, but realized that they occur in fact rarely out-
side room scenes or scenes with tools. Instead, what
is more valuable for scene classification is a thorough
description of the alignment of two segments, a pair
descriptor, as we will present in section 2.

One challenge of grouping is to find the appropriate
selections as the combinatorial analysis of hundreds
of segments is computationally costly. For images s-
maller than 200 x 300 pixels approximately - which
return several hundred segments for different spatial
(image) scales - , the computations pose little prob-
lems for a nowadays computers, but image sizes be-
yond that can lead to memory shortage during pair
analysis. It is therefore necessary to consider selec-
tions without compromising classification accuracy as
in principle any pair of segments is potentially useful
for discriminating categories.

Building on the pair descriptors, we generate a
quad descriptor, which is a geometric characteriza-
tion of two pairs (section 3). Its creation is analogous
to the pair descriptor.

It would also make sense to form groups of three
segments in order to describe triangles or any type
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of regularity as it may occur in shapes. We have not
developed the methodology so far yet, but we will
present a relatively simple radial description of near-
closed shapes obtained from iso-contours, which can
be regarded as a first step into that direction (section
4).

In section 5, descriptors for clusters of segments are
introduced, whereby the clusters are defined predom-
inantly by proximity and multitude and less so by
exact, geometric alignment aspects as with the pair
and quad descriptors, for which we use a precise num-
ber of segments and determine a precise geometry.

We further tested a set of texture descriptors whose
parameters were taken from regions outlined by arcs
(curved segments), certain pair (biases) and isocon-
tours (shapes) (section 6). The parameters were tak-
en from the output of various types of image prepro-
cessing.

The input to most grouping processes are a list of
partitioned segments S, partitioned by the method
introduced in (Rasche, 2010). The segments (coarse)
geometry can be straight, curved or elongated (am-
plitude larger than chord length) - hereafter the term
’curved’ includes the elongated case. We use the ter-
m straight for straight segments and arc for curved
segments and avoid the term straight arc. For each
segment we use only 3 coordinates (its endpoints and
midpoint) and 2 parameters (length l and bendness
b) as a starting point; the entire grouping procedure
therefore has complexity O(N2K) only, with N the
number of segments and K the number of opera-
tions to determine the parameters. For small images
K dominates, for larger images N2 dominates. In
the latter case, N can be prohibitively large and as
pointed out above, it requires selection criteria to re-
duce the complexity. The input to the shape descrip-
tion process is a list of isocontours I. Algorithm 1
overviews the processes developed and tested in this
study. In section 7 a few implementation details are
given.

The grouping output is applied in an image classi-
fication task, for which we introduce the classifiers we
had tested in section 8. The evaluation takes place
in section 9.

2 Pairs

The geometric characterization of pairs of segments
we pursue, follows the observation that many ob-
jects and structures in nature are symmetric or at
least partially symmetric, e.g. (Willmer, 1990); many
man-made objects are symmetric as well. This (2D)
symmetry consists of an even alignment of segments

Algorithm 1 Grouping processes tested in this s-
tudy. segs: segments. P: list of pairs; Q: quads; F :
shapes; C, B: cluster descriptors; Px,Fx: texture de-
scriptors derived from corresponding descriptors out-
lining a region.

Input : - S, list of partitioned segments
- I, list of isocontours

Output: lists of vectors for different group types:
pk(P),ql(Q), fi(F), cj(C),bm(B)
ta, tp(Px), ts(Fx)

1) PAIRS(S)→ P,Px: accurate alignment of 2 segs
CLUST(S)→ B, C: coarse alignment of ≥ 2 segs
SHAPE(I)→ F ,Fx: up to 5 corners described

2) QUAD(P)→ Q: accurate alignment of 4 segs

whether it be bilateral (mirror, reflection), rotation-
al or radial. In case of pairs it is particularly the
bilateral symmetry that is of interest.

Even if a pair of segments may be regarded as a
simple structure, it affords different measures to ar-
rive at a measure of symmetry. This maybe obvious
for the cases of bilateral and radial symmetry: bilat-
erality is determined in reference to an axis, radiality
is determined in reference to a center point. Yet for
bilateral symmetry, there are cases for which it is
more efficient to employ different measures. Hence,
we will use different operational definitions of sym-
metry (for pairs). We deduce this by looking at com-
binations of straight and arc segments: bilateral sym-
metries are composed of a number of simpler symme-
try measurements, which we call evenness measures.
We will define the evenness measures such that they
produce graded values, with which in turn one can
generate complex symmetry measures by merely cor-
relating the evenness measures. All these measure-
ments can be performed in relatively short time by
using only few conspicuous segment points (and not
all points).

Since structures can also be distorted and an ob-
ject - that normally appears as symmetric - thus fre-
quently appears as partially symmetric only. This
is a challenge for recognition because it means that a
symmetry measure must be robust to small structural
variations - and also the structural description of an
object class needs to exhibit this robustness. Hence
a symmetry measure should produce only degraded
values in presence of structural distortions and not
lead to immediate null values.
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Figure 1: Pair combinations of elementary segments (straights and arcs, sometimes dots). a. Pairings
with straight segments. b. Straight/straight and straight/dot pairing. Row 1: parallel to collinear; Row
2: parallel and dot pairings. c. Pairs of arcs. Column 1: from closure to interlocked. Column 2: from
hyperbola to one-branch adjacent. Column 3: from U shape to M shape. Column 4: From Y shape to W
shape. d. Column 1: arrow shapes; Column 2: K and D shapes; Column 3 and 4: straight/circle segment
combinations. e. Parallel and collinear chords (for arcs). f. Pairs with straight and partially aligned arc.
g. Pairs of circular (or near-circular) segments. h. Relations of points and arcs. i. Wing beat (downward
motion). k. Axis length ratios in wing beat. l. Legend of symbols. m. Seemingly different pairs, but
existent in previous subpanels already (merely with a low degree of angularity).
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2.1 Overview

Figure 1 shows combinations of pairs of segments,
which were organized according to certain alignmen-
t aspects. For completion, we also added segment-
dot relations, but have not made an explicit effort
to model those separately. Figure 1a and b contain-
s straight/straight combinations only (and some s-
traight/dot combinations); 1c and e exhibit arc/arc
combinations; 1d and f show straight/arc combina-
tions; 1g contains circle/circle (or near-circle) combi-
nations; 1h exhibits arc/dot combinations; 1k shows
combinations which are present already in other sub-
panels (to be revealed later). Most of the pair combi-
nations have at least one type of symmetry (simple or
complex). Each subpanel contains one or more sets
of pairs for which a geometric attribute (dimension)
gradually changes:

Panel 1a: in these combinations the intersection
angle changes and the endpoint alignment varies; the
combinations can be already considered traditional
(e.g. (Lowe, 1985)): parallel, converging, 3 L features
(acute, right and obtuse) and T feature (from left to
right).

Panel 1b: contains various alignments along the
parallel: row 1 contains parallel overlapping (or par-
allelogram), parallel non-overlapping and collinear;
row 2 has parallel pairs of uneven length, with the
2nd one showing justified endpoints; the last 3 are
equivalent to dot/straight combinations.

Panel 1c: pairs of the first two columns are shifted
along their parallel chords: in column 1 the pairs
face each other, shifted from closure to interlocked;
in column 2, the point away from each other, shifted
from hyperbola to one-branch adjacent. In those two
columns the geometry of a single arc does not change
but is merely shifted along the chord line. In columns
3 and 4, the angle of a segment changes (from acute
to obtuse). In column 3, pairs range from U shape to
M shape; in column 4 from Y shape to W shape.

Panel 1d: column 1 has arrow shapes of increasing
spacing between the two segments; column 2 has K
and D shapes; in column 3 and 4 are straight/circle
combinations analogous to row 2 in panel b.

Panel 1e: Parallel and collinear chords (for arcs).
For pairs no. 1 to 4 and 7, the chords are collinear
and the pairs differ in amplitude (2 vs. 4) or in the
coarse direction of their face angles (1 vs. 3). For
pairs no. 5, 6 and 8, the chords are parallel but differ
in alignment.

Panel 1f: Pairs with one curved and one straight
arc, whereby one branch of the arc is aligned parallel
or justified by endpoint with the straight segment.
The change includes an increasing angle from left to

right in the first row, and different justification in the
second row.

Panel 1g: Pairs of circular (or near-circular) seg-
ments. Should the segment be only near circular,
meaning containing a gap, then a number of different
alignments are possible.

Panel 1h: Relations of points and arc segments.
In the first three, the dot is justified to the segment’s
midpoint but at different sides or with different sep-
aration. In the last three are analogous to the last
three cases in panel b, 2nd row.

Panel 1i: Legend of symbols for some measures.
Panel 1k: These combintations already exist in

previous subpanels already, but have a different de-
gree of edginess (angularity). Pairs no. 1 to 3 cor-
respond to pairs in row 1 of subpanel c. Pair no. 2
corresponds to the pair row=1/column=3 in panel c.
Pair no. 4 is a degenerate form of pair no. 1.

All these combinations can be determined relative-
ly accurately and fast using only a few conspicuous
points. Starting with only three conspicuous points
per each curve segment - its two endpoints and its
(curve’s) midpoint -, one proceeds to determine the
three symmetric points and some other key points for
each pair (to be detailed in subsection 2.2).

Given the array of pair combinations, we identify
three types of bilateral symmetry:
• Sym-Ax Bilaterality is the symmetry in ref-

erence to Blum’s symmetric axis (sym-ax; (Blum,
1973)) of the pair (figure 4a). Such pairs are marked
as %S in figure 1, e.g. 1st row in panel a and c, or
3rd and 4th column in panel c.
•Middle-Ax Bilaterality is the symmetry in ref-

erence to the ’middle’ axis that runs through the two
curves’ midpoints, such as in a D shape (’|’ and ’)’)
or in a K shape (’|’ and ’<’). Pairs are marked as
%M in figure 1, see for instance column 2 in panel d.
• Segment Bilaterality is the symmetry in ref-

erence to one (elongated) curve segment of the pair,
such as in a T shape. Pairs are marked as %T, see
for instance 1st column in panel d.

Three pairs show both bilaterality types, sym-ax
and middle-ax bilaterality, see panel a and c. They
differ from each other just by the distance of the seg-
ments’ midpoints. One could also define a radial sym-
metry measure, for instance by measuring to what
extent the segments’ endpoints are equidistant from
the pair’s center point. But that is a rare case we
do not pursue here. Some combinations bear also ro-
tational symmetry, which also is not treated here as
we pursue mainly image classification for which there
exists a strong orientation dependence.

The bilateral symmetries can be broken down in-
to a number of simpler symmetries such as parallel
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chords, equal separation between endpoints and so
on. These simple symmetries are now called even-
ness measures; they can be regarded as attributes of
the ’full’ symmetry. Some of these evenness measures
are ordinary Gestalt groupings. They are develope-
d next (subsection 2.3), after some terminology and
definitions was introduced (subsection 2.2). Then,
the structural biases are developed (subsection 2.4):
they are often composed of evenness measures and
some of them represent the bilateral symmetries.

2.2 Terminology and Definitions

For a single segment - whether straight or curved -
we determine its halfpoint and face angel:

- Halfpoint, ph: the midpoint of a curve segment’s
chord. If the curve segment is straight, then midpoint
and halfpoint are the same.

- Face Angle, φ : is the directional angle of the line
segment pointing from a segment’s midpoint to its
halfpoint (if classified as curved arc).

The following terminology for a pair of segments
is chosen for the case of L features and aims at sim-
plifying the understanding of the measurements. For
other alignments, such as parallels, T features, clo-
sure, some of the terms may become irrelevant. The
labeling is illustrated in figure 2a and b, figure 3, and
is summarized in table 1:

- Connecting segments: line segments, that con-
nect the corresponding conspicuous points: the cor-
ner segment, connecting the two proximal endpoints
←−−→pc1pc2; the middle segment, connecting the two mid-
points ←−−−→pm1pm2; the open segment, connecting the t-
wo distal endpoints (open points) ←−−→po1po2. The corre-
sponding segment orientation angles are oc, om and oo
(≤ π). The midpoints of those segments correspond
to symmetric points (sym-points) and are called cor-
ner point, middle point and open point, pc, pm and po,
respectively. The segment lengths are the distances
dc, dm and do.

- Axes: three sym-axis approximations are formed
(see figure 3a and b): the inner axis, ←−→pcpm; the outer
axis, ←−→pmpo; and the total axis ←−→pcpo.

- β angles: are the intersecting angles of the con-
necting segments and the sym-axes (inner, outer and
total axis). The angles βc, βm and βo are formed
between the connecting segments and the inner and
outer axes, see figure 3a. Angles βtc and βto are
formed between the corner and open connecting seg-
ments and the total axis (figure 3b).

- Extension distance: the distance between the in-
tersection point and the proximal segment endpoint,
de1=pipc1 and de2=pipc2, respectively.

Table 1: Labeling in a pair of segments. dist: dis-
tance; seg: segment; pt: point.

1 l1, l2 segment curve lengths, l1 ≥ l2
2 `1, `2 segment chord lengths
3 ph halfpoint: midpoint of chord
4 φ face angle: direction from mid- to

halfpoint, [0, π]
5 κ chords’ intersecting angle, [0, π2 ]
6 pc1, pc2 proximal endpoints
7 pm1, pm2 midpoints
8 po1, po2 open (outer) endpoints
9 pi intersection point of the chords’ line

equations
10 de1, de2 extension distances: pipc1, pipc2
11 df1, df2 full distances: pipo1, pipo2
12 dsh shift dist: ph1pah2, pah2 on chord 1

connecting segments
13 ←−−→pc1pc2 corner segment
14 ←−−−→pm1pm2 middle segment
15 ←−−→po1po2 open segment
16 pc corner point (midpt of corner seg)
17 pm middle point (midpt of middle seg)
18 po open point (midpt of open seg)
19 dc corner distance, |←−−→pc1pc2|
20 dm middle distance, |←−−−→pm1pm2|
21 do open distance, |←−−→po1po2|
22 ←−→pcpm inner axis
23 ←−→pmpo outer axis
24 ←−→pcpo total (complete) axis
25 β angles between connecting segments

(13-15) and sym-axes (19-21)

- Full distance: the distance between the inter-
section point and the distal endpoint, df1=pipo1 and
df2=pipo2, respectively.

- Shift distance: expresses to what degree two (ap-
proximately) parallel line segments are shifted with
respect to their chords: dsh=ph1pah2, whereby pah2 is
the point on chord line 1, for which the separation
between half point 2 and chord line 1 is shortest.

2.3 Evenness Measures

In this subsection, the term similarity is synonym for
evenness. The measures are defined as ranging be-
tween 0 and 1, so are typically the angles (unit turn)
- we give radians sometimes for clarity. By using
turn range, we can conveniently correlate the mea-
sures with each other to generate more complex mea-
sures.

• Equi-Gap, εqεq : measures the similarity be-
tween the corner and open distances (between the
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and parallel feature. d. An intermediate form of a
L and parallel feature. Note in this case, that the
intersection point is distal from the corner point.

two gaps of the pair):

εq = 1− tanh

(
dc − do
l2

)
, (1)

where l2 serves as a scaling factor.
• Visavis, ε÷ : describes to what extent two seg-

ments are opposite (vis-a-vis) of each other by com-
puting the degree of even alignment between the two
curves’ half points. dsh is the shift distance and T÷ is
a tolerance dependent on the shorter chord length `s:

ε÷ =

{
T÷−dsh
T÷ , dsh < T÷, T÷ ∝ `s

0 , else.
(2)

For a zero shift distance the measure is maximal; for
increasing shift distance the measure decays. The
measure selects approximately parallel segments or
T features, but ignores L features.
• Chord Orthogonality and Parallelism,

υ⊥and υq : are measures that express how orthogonal
or parallel the two chords are, for which the intersec-
tion angle κ (turn range) is used:

υ⊥ = κ2 (3)

υq = (1− κ)2, (4)

a
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 axis

total
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Figure 3: Measurements in a pair of segments. a.
pc=corner point; pm=middle point; po=open point.
Dashed: connecting segments. Gray: axis segments.
b. Total axis (gray) and its related β angles; δ angles.

whereby the square operation serves as an accentua-
tion.
• Face Equi-Directionality and Opposition-

ality, ω� and ω↔ : describe to what extent the two
face angles point into the same direction or into op-
posite direction. With ∆φ as the difference in face
angles ([0..π], normalized to turn range resp.), the
two measures are defined analogous to chord orthog-
onality and parallelism:

ω� = (1−∆φ)2 (5)

ω↔ = ∆φ2. (6)

Note that with the two measures one cannot dis-
criminate between closure and hyperbola features, for
which it requires additional measurements (to be fur-
ther specified in 2.4.2).
• Chord Intersectionality, υ+ : expresses to

what degree the two chords intersect, which occurs
when an arc intersects with a segment as shown in
figure 1d, columns 1 and 4 for instance. The measure
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is maximal if the chords intersect at their midpoints
(bisect each other). This can be determined using
the extension distances (in which case they are not
actual ’extensions’):

υ+ =

{(
1− df1−de1

l1

)(
1− df2−de2

l2

)
, c+

0 , else.
(7)

where c+ is the condition that the intersection point
pi lies on both chords. For intersection points which
move away from either midpoint, the value decreases
toward 0.
• Chord Collinearity, λa : collinearity measures

to what extent the two chords lie on the same straight
line. The measure is composed of two conditions and
a correlation. One condition is that the distance be-
tween midpoints, dhh, is larger than half the sum of
the chord lengths; the other condition is that the dis-
tance does not exceed a tolerance dependent on the
shorter segment, Tλa ∝ l2(1 − χ). Specifically, the
measure is:

λa =


( (T

λa−dah)

T
λa

· υq
)2

, dhh > (`1 + `2)/2

...dah < Tλa

0 , else,

(8)

where squaring serves to accentuate the collinear
alignments.
• Ratio Curve Lengths, rl : The similarity of

segment lengths is expressed by a simple ratio:

rl = l2/l1. (9)

2.4 Structural Biases

Structural biases are organized into three groups.
One group consists of simple or preparatory biases,
which are later used for constructing bilateral symme-
tries and complex biases. They are treated next. The
other groups are the bilateralities (subsection 2.4.1)
and the facing biases (subsection 2.4.2).

Due to the formulation of the previous evenness
measures, many of the biases treated subsequently
can now be expressed relatively easily by the evenness
measures, for instance by a mere multiplication.
• Lean Proximity, χg : describes the proximi-

ty between two segments (and is thus not an actual
structural bias). To allow for the possibility of global
pairings, it is defined rather lax but starts to decline
rapidly after approximately 5 times the length of the
shorter segment l2:

χg =

{
1 , l2/dm > 1

1− (1− l2/dm)5 , else.
(10)

The measure is used in many structural biases, be-
cause without it, many pairs consisting of short, dis-
tal segments would exhibit some type of symmetry
that would make them a prefered choice and which
therefore would render the description unspecific.
• Endpoint Symtracity, εZ : measures to what

extent the segments’ endpoints form an isosceles
trapezoid - also called symtra by Halsted, pp. 49
(Halsted, 1896):

εZ = εq · υq · χg. (11)

The symtra is the least symmetric of the endpoints-
quadrilateral, but the endpoints could also form more
symmetric alignments such as a parallelogram, rect-
angle or square. The measure is a component of the
mid-ax bilaterality measure (see also panel figure 1c,
row 2).

2.4.1 Bilateralities

• Sym-Ax Bilaterality, ys : is measured by adding
the β intersection angles. For perfect sym-ax bilater-
ality, the angles are all orthogonal and the segment
geometries are the same. For increasing differences
in segment geometries, the angles decrease, but only
gradually and the measure is thus robust (tolerant).
Also for reason of robustness, the individual evenness
measures are added and not multiplied. For instance,
an L feature may not be perfectly aligned in its corner
(vertex) and yet still be relatively symmetric, com-
pare figure 4a and b. A similar case is shown for a
hyperbola feature, compare figure 4c and d. Thus,
if one angle showed a near-zero value due to a slight
misalignment, a multiplicative measure would drop
the measure to near zero. Additional robustness is
provided by adding the angles from the total axis,

ys = (βc + βm + βo + βtc + βto)/5 · χg · s̆κ , (12)

whereby the measure is normalized by the number of
summands.
• Mid-Ax Bilaterality, ym : can be expressed

by the correlation of the symtracity and the visavis
evenness (equation 2),

ym = εZ · ε÷. (13)

Robustness is naturally provided by the evenness
measures.
• Segment Bilaterality (T bias), s̆ᵀ : if the

intersection point lies on the chord of either segment,
then the alignment is of type ’T’. In this case, one
extension distance and one full distance correspond
to the two ’branches’ of the intersected segment. If
the intersection point lies exactly on a halfpoint, then
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the T bias is maximal. It decreases with increasing
distance piph, that is, if the intersection point moves
toward either endpoint:

s̆ᵀ =

{
1− 2piphda

`2
, cᵀ ∩ da < `2

0 , else,
(14)

whereby cᵀ is the condition that the intersection point
pi lies on either chord:((de1 + df1) < `1 ∪ (de2 + df2) <
`2). da is the displacement between the segment end-
point - that is closest to the intersected segment - and
the chord of the intersected segment (figure 2c).

a b

c d

Figure 4: Symmetry in pairs. a. Symmetric L fea-
ture: angles between axis (gray) and dashed line seg-
ments are orthogonal. b. Slightly asymmetric L fea-
ture: βc misaligned. c. Symmetric hyperbola fea-
ture. d. Slightly asymmetric hyperbola feature: βm
misaligned.

2.4.2 Facing

Three biases for arc/arc combinations are developed
now, which differ from each other in the way the arc
segments face each other, hence they are called the
facing biases. They are the hyperbola, the closure
and the banana bias (figure 5). When they exhibit
symmetry, they belong to the sym-ax and mid-ax bi-
laterality. But even if stronly asymmetric, they can
be very conspicuous pairs in scenes and are therefore
worth formulating with a degree of tolerance.

The three biases can be distinguished from each
other by the direction of their ’faces’ (the ’open’ side
of the segment), figure 5. For a hyperbola feature,
the faces point away from each other; for a closure
feature they point toward each other; for a banana

feature they point into the same direction. To dis-
criminate between these cases, four directional angles
are determined, two angles for each segment. For a
segment, the two angles originate from the segment’s
midpoint: one is the face angle (φ = −−−−→pm1ph1, dotted
in figure), the other angle points to the other seg-
ment’s midpoint (τ = −−−−→pm1pm2, dashed in figure). The
corresponding two angles are formed for the second
segment (∠−−−−→pm2ph2 and ∠−−−−→pm2pm1 respectively). For
any of the three structural biases, the two angles
(for one segment) point in approximately opposite
or same directions, abbreviated as ’opp’ and ’same’
in figure. In case of the hyperbola feature, the two
angles point in opposite directions for each segment,
an opp/opp pairing whose condition is short-noted as
φoo; for the closure feature, both angles point in the
same direction for each segment, a same/same pair-
ing (φss); and for the banana feature the pairing is of
type same/opp (φos). The minimum tolerance for the
three conditions is if the difference of the two angles
(φ and τ) differ by more than π/2 for the opp case,
or by less than π/2 for the same case.

Pc1

Ph1

Po1

Pm2

Po2

Pc2

a b c

Pm1

Ph2

opp opp same same opp same

Hyperbola Closure Banana

Figure 5: Conspicuous arc/arc structural biases.
Face angle: directional angle (of a segment) pointing
from midpoint to halfpoint. a. Hyperbola bias: face
angles point away from each other (φoo). b. Closure
bias: face angles point toward each other (φss). c.
Banana bias: face angles point the same side (φos);
see also panel figure 1e, no. 6 and 7.

The biases are formulated as consisting of a bias
that is common to all of them, the facing bias, and
of the individual measures and conditions.

• Facing, s̆κ : in all three cases, only pairs for
which both segments are curved are allowed, (a1 >
0)∪ (a2 > 0), where a is an arc parameter as defined
in our previous study (a1, a2: the arc values for each
segment). The segments are required to lie approxi-
mately vis-a-vis and we factor in lean proximity and

9



Table 2: Summary of evenness measures (E) and structural biases (B). See also table 1. Bilat=Bilaterality.
E Equi-Gap εq = 1− tanh((dc − do)/l2)
E Vis-a-vis ε÷ = (T÷ − dsh)/T÷ if dsh < T÷, 0 else T÷ ∝ `s
E Chord Orthogonality υ⊥ = κ2 κ: intersection angle of the 2 chords
E Chord Parallelism υq = (1− κ)2

E Chord Intersectionality υ+ see equation 7
E Face Equi-Directionality ω� = (1−∆φ)2 ∆φ: diff in face angles
E Face Oppositionality ω↔ = ∆φ2

E Ratio Seg Lengths rl = l2/l1
B Proximity χg = 1, if l2/dm > 1, 1− (1− l2/dm)5, else
B Endpoint symtra εZ = εq · υq · χg
B Sym-Ax Bilat [L,V,(),...] ys = (βc + βm + βo + βtc + βto)/5 · χg · s̆κ
B Mid-Ax Bilat [K,D] ym = εZ · ε÷
B Segment Bilat [T] s̆ᵀ = 1− (2piphda/`2)
B Facing s̆κ = ε÷ · χg · rl if both segments curved, 0 else
B Hyperbola s̆)( = s̆κ · ω↔ if both segments face away, 0 else
B Closure s̆() = s̆κ · ω↔ · υq if both segments face each other, 0 else
B Banana s̆)) = s̆κ · ω� · υq if both segments face same side, 0 else
B Ribbon s̆Rib = ε÷ · χg · rl · υq

length similarity:

s̆κ =

{
ε÷ · χg · rl , (a1 > 0) ∪ (a2 > 0)

0 , else.
(15)

•Hyperbola, s̆)( ; closure, s̆() ; banana, s̆)) : the
biases are considered optimal if the face angles point
opposite directions (ω↔) for the hyperbola and clo-
sure bias, or if the face angles point equal directions
(ω�) for the banana bias. We attempted to exclude
chord parallelism, as to include the largest facing vari-
ability possible, but for the closure and the banana
bias, chord parallelism was necessary, otherwise some
features would not resemble any facing. In summary:

s̆)( =

{
s̆κ · ω↔ , φoo

0 , else
(16)

s̆() =

{
s̆κ · ω↔ · υq , φss

0 , else
(17)

s̆)) =

{
s̆κ · ω� · υq , φos

0 , else.
(18)

• Ribbon, s̆Rib : The ribbon pair is very similar
to the closure and banana bias:

s̆Rib = ε÷ · χg · rl · υq. (19)

2.5 Selection

Ideally one would consider all pair combinations for
learning, as any pair can be potentially category spe-
cific and thus suitable for category representation.

Practically, we are limited by storage size, meaning
we can not save the long list of parameters for all seg-
ment pairs (square complexity); and we are limited
by the learning duration, meaning the search for cat-
egory specific descriptors requires reduced lists, oth-
erwise learning becomes unfeasibly long. Thus, the
reduction of pairs requires criteria that do not dis-
card too many descriptors that are potentially cate-
gory specific. Several criteria can be considered. One
criterion is proximity, but even distal segments can
be category specifics that is why we used a lean prox-
imity bias (eq. 10). Another criterion is symmetry,
which is automatically included in the formulation of
our structural biases. We accommodate both criteria
by simply choosing those pairs that exhibit a ’high’
bias value for a chosen segment under investigation.
We need to chose appropriate thresholds to deter-
mine what we consider high values. There are two
principal cases to be considered:

- Same bias type: a group of three parallel straights
with uneven spacing, e.g. ’| ||’ shows two high ribbon
values for each segment. It is natural to describe this
group with two ribbons only, the left and the right one
(| | and ||, resp.), but even the third one consisting of
the two outer segments can be a useful pair for cate-
gory discrimination as it is equally symmetric as the
other two. Thus it requires a threshold that decides
which pairs of the same bias type are worth keeping.
We chose one that is based on a fraction of the maxi-
mum value for a given segment i under investigation:
we observe the (pair) bias values in connection with
all other segments j (j = 1, .., N ; j 6= i) in distribu-
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tion Bs̆(j) for a chosen structural bias and select the
threshold Θs̆s = Ss̆s maxj B

s̆(j), where subscript s̆s
stands for ’same bias type’ and Ss̆s is the fraction.

- Different bias type: a group with two straights
and one arc, e.g. ’| ()’ shows three high bias values,
namely for a K, a D and a closure bias. This requires
a criterion to decide what other different biases we
intend to permit. The criterion is based on observ-
ing all bias values for each type and determining is
maximal value.

Summarized from the perspective of a (single) pair
formed by segments i and j: the pair is selected if
for any bias value s̆ two conditions are fulfilled: 1)
s̆ > Θj

s̆s or s̆ > Θi
s̆s; 2) s̆ > Θs̆d. We have not

specified yet for which biases this selection is carried
out, but it is natural to take all structural biases, in
particular the bilaterality and facing biases.

2.6 Pair Vector

For each selected pair ∈ Pk, a vector p with the fol-
lowing dimensions is created:

p(o, γ, dc, dm, do, lµ, rl, b1, b2, ym, ys, ...

s̆ᵀ, s̆)(, s̆(), s̆)), s̆Rib, {apps}). (20)

where o is the pair’s total-axis orientation; γ the di-
rectional angle from the corner point to the open
point - if the pair’s open distance is larger than it-
s corner distance (e.g. as in a L or V feature); lµ the
average segment length, lµ = (l1 + l2)/2; b1 and b2
are the curvature values for each segment.

Algorithm 2 Selecting Pairs.

Input : S, list of partitioned segments
Output: pk, list of pair vectors
1) Select long segments using median length value
→ Slong

2) For Slong generate pairs (i, j) and their corre-
sponding biases
3) Select pairs according to bias criteria → P
4) Create vector pk for each element ∈ P (eq. 20)

A substantial set of biases was implemented, that
cover many but not all pair alignments as illustrated
in figure 1.

3 Quads

To understand what conspicuous alignments can be
described by two pairs of segments, a quad, we ob-
serve a few pair alignments in figure 7. The first
geometric characteristic is the alignment of the pairs’
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Figure 6: Pairs of a face image (see figure 1). Only the
first 100 salient pairs are shown; the two segments are
drawn in black, the center (middle point) is denoted
by a plus sign.

total axes (gray stippled). In alignments a to e the
two axes lie parallel in the 2D plane; more specifical-
ly, in alignments a to c they are aligned like ribbons;
in alignments d and e they are collinear; in f they in-
tersect. The second characteristic in what direction
a pair’s total axis points to by observing a pair’s di-
rectional angle γ (eq. 20) - if the pair is not a ribbon.

If both directional angles point toward the same
side, as in b, we label this a M bias; if the two angles
point in opposite directions, as in case c, we label it
a N bias. If one pair is a ribbon and the other a pair
with an angle pointing away and a collinear ribbon
axis as in case d, then we label it a Y bias; in case
e the angle points toward the ribbon and we label
it an arrow bias. In case f, the two pairs’ axes form
a cross, hence a cross bias; this case also illustrates
that one pair can be nested within another; one form
of symmetry is that the nesting occurs concentric.

And there are many alignments which are anal-
ogous to the alignments developed for pairs of seg-
ments (figure 1). We therefore use the same notation
for the structural biases but for quads they are de-
termined with the corresponding total axes. In what
follows is a description of the biases typical for quads.

Whether a pair is nested within another can be con-
veniently determined using a pair’s silhouette points
only, e.g. pSil={pc1, pm1, po1, pc2, pm2, po2} and the
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pole of the pair, which is defined as pPol = (pc+po)/2.
For two pairs under investigation we determine also
the smallest of those radii, denoted rmin.
• Concentricity, s̆} : describes how concentric

two pairs are by observing the middle distance be-
tween the two axes:

s̆} =

{
1− dm/rmin , dm < rmin

0 , else,
(21)

The bias is maximal if the middle distance dm is zero
which means the two axes’ middle points lie on top of
each other. The bias decreases for increasing distance
and is zero if the spacing is larger than the minimum
radius; this ensures that a smaller pair within a much
larger one, does not exhibit concentricity even if the
smaller one sits in the corner of the larger one.
• Crossness, s̆+ : describes to what degree the ax-

es form a symmetric plus (or x) sign and is expressed
by correlating the orthogonality and intersectionality
measure:

s̆+ = υ+ · υ⊥ (22)

•M and N, s̆M , s̆N : the biases can be convenient-
ly expressed using the evenness measures vis-a-vis,
equi-directionality and oppositionality:

s̆M = ε÷ · ω2
� (23)

s̆N = ε÷ · ω2
↔, (24)

• Y and Arrow, s̆Y , s̆Arw : we intend to describe
how tight a Y alignment is at its center, that is at
the proximal lying axes’ endpoints, in comparison
to the axes’ distal endpoints. For the arrow align-
ment we determine the inverse, namely how wide its
center is. dp is now defined as the maximum sym-
metric distance of the proximal lying symmetric dis-
tances, which can be either corner or open distances
depending on the pair’s geometry; dd is defined as
the maximum symmetric distance of the distal lying
distances. The corresponding normalized ratios are
taken and multiplied with the measures for collinear-
ity and proximity:

s̆Y = tanh
(dd − dp

dp

)
· λa · χg, (25)

s̆Arw = tanh
(dp − dd

dd

)
· λa · χg. (26)

Selection and Vector Formation A selection
analogous to the ones in pairs is carried out. For
each selected quad ∈ Ql, a vector q with the follow-
ing dimensions is created:

q = (s̆+, s̆}, s̆M , s̆N , s̆Y , s̆Arw, ..., {apps}) (27)

a

b

c

d

e

f

Figure 7: Some conspicuous alignments for pairs: the
gray stippled axes are to be observed. a. Two ribbons
aligned as a ribbon. b. Pairs with directional angle
γ pointing toward the same side: M bias. c. γ angles
pointing toward opposite directions: N bias. d Y
bias. e. Arrow bias. f. Cross bias.

Algorithm 3 Selecting Quads.

Input : P, list of (selected) pairs
Output: ql, list of quad vectors
1) Generate pairs (i, j) and their corresponding bi-
ases
2) Select quads according to bias criteria → Q
3) Create vector ql for each element ∈ Q (eq. 27)

4 Shapes

Shapes are obtained from an isocontour analysis of
the image, as opposed to an edge analysis for the
contour segments used previously. Isocontours were
not partitioned and were immediately analyzed for
structural biases as presented below. The structural
analysis is based on the isocontour’s radial signature
and is thus of low complexity as opposed to the par-
titioning and grouping analysis for edge contours.

We particularly focus on describing ’simple’, pla-
nar, closed or near-closed shapes. Here, simple is
understood as circular or loosely cyclic, whereby
we define the latter as simple (non self-intersecting)
polygons or as star shapes (star-shaped, non self-
intersecting polygons). If the shape is fragmented, its
gap sizes should be small only, such that the shape
appears as nearly closed. In this study, only shapes
with a single gap are considered, that is closed or
near-closed curves. Such curves occur in abundance
in gray-scale images of real-world scenes, especially
at a finer scale.

The shape representation is based on the radial sig-
nature, which describes the distances of the pixels to
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the centroid (pole) of the shape, also called centroid-
distance function or radial-distance signature in other
studies. This or similar distance signatures are often
used as a first step in building shape descriptions us-
ing the Fourier Transform, see (Zhang and Lu, 2005;
El-ghazal et al., 2009) for reviews. But here, the ra-
dial signature itself is analyzed and is parameterized
based on its extrema and other geometric informa-
tion. Some of the parameters are simple shape de-
scriptions as used previously (Peura and Iivarinen,
1997).

For a given isocontour, its pole is determined by
taking the mean of all curve points. A radial sig-
nature R(v) is formed, whereby v is the arc length
variable; the signature is normalized by the average
radius. The signature’s extrema are determined and
assigned to lists Rmax and Rmin(maxima and minima
respectively), with nmax the number of maxima. The
directional angles γ(i) of the maxima are taken and
their included angles α(i) between them determined
and ordered by decreasing value (i = 1..nmax).

Five structural biases were created, which repre-
sent to what degree the shape corresponds to a spe-
cific (global) form; s̆a represents curved shapes and
may correspond to the bending energy (Peura and I-
ivarinen, 1997); s̆2 coarsely represents the degree of
elongation (or eccentricity in (Peura and Iivarinen,
1997)), an analogue measure to the aspect ratio; s̆3
represents triangle or deltoid shapes; s̆4 stands for a
quadrilateral or astroid shape; s̆5 is for a pentagon
or any star shape with five peaks. Thus, the bias
number corresponds to the number of ’outer’ corners
(vertices) with angles smaller than π and we refer to
those shapes sometimes as n-corner shapes.

For notational simplicity we use the following an-
gles: supplementary angles αc as a π-complement
to the included angles α; interior angles β3 = 2π

3 ,
β4 = π

2 , β5 = 2π
5 for expressing the degree of struc-

tural bias - they correspond to the interior angles for
an equilateral triangle, a square and a regular pen-
tagon.

• Curved, s̆a: the bias allows to express whether
a shape is of type bean, bicorn, D or crescent and is
only larger zero if the largest included angle α(1) is
a reflex angle (larger than π

2 ). The bias corresponds
to the difference above π:

s̆a =

{
α(1)− π , α(1) > π

0 , else.
(28)

• Two-corner, s̆2: this bias is suitable to express
shapes such as ovals, ellipses or U-turns. The bias
is taken only if two or more maxima are present; its
value depends on the complementary angles for the

included angles, and is proportional to the elongation
η and weight w:

s̆2 =

{
π−αc(1)−αc(2)

π wη , nmax ≥ 2

0 , else.
(29)

The weight (or strength) equals the range of values
for the 2nd derivative of the (normalized) radial sig-
nature: w = rng(R′′). The weight so corresponds to
the degree of ’peakness’ of the shape; the elongation
is a parameter by itself and is defined later.
• Three-corner, s̆3: expresses triangles or star

shapes with three peaks. The bias decreases with
inreasing asymmetry from an equilateral triangle (or
deltoid or equivalent star shape):

s̆3 =

{
β3−

∑3
i=1(β3−α(i))

β3 w , nmax ≥ 3

0 , else.
(30)

• Four-corner, s̆4: the bias corresponds to the
ratio of the fourth included angle and the interior
angle for a square:

s̆4 =

{
α(4)
β4 w , nmax ≥ 4

0 , else.
(31)

• Five-corner, s̆5: the bias is analogous to the one
for the four-corner polygon:

s̆5 =

{
α(5)
β5 w , nmax ≥ 5

0 , else.
(32)

In summary, the corner biases have a large value for
cyclic polygons (equilateral triangle, square, rectan-
gle, regular pentagon,...). The bias decreases the
more the shape deviates from the interior angle of
the cyclic polygon. The bias also decreases the less
’acute’ the interior angles are such as in a squircle
(four-cornered wheel). Conversely, the bias grows
very large if the corners become more acute such as in
a hypocycloid (deltoid, astroid,...) or any star shape
- due to the use of the derivative-dependent weight
value w. A circle is expressed by a zero value for all
structural biases.
• Elongation, η: measures the spatial extent of

the shape and is 0 for symmetric shapes such as cir-
cles, squares and pentagons; it is proportional to the
range (rng) of radii otherwise:

η =


rng(R(v)) , s̆2 > 0

max(rng(Rmax), rng(Rmin)) , nmax ≥ 3

0 , else.

(33)

For polygons with three or more corners, the range of
the signature values is not a sufficient elongation mea-
sure, because an equiangular polygon (or in particu-
lar a hypocycloid) shows a positive elongation value
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due to its corners but does not contain a true elon-
gation. The elongation is therefore determined with
the lists of maximum and minimum radii.
• Symmetry, y: is determined by two measures.

One is the signature’s irregularity, ι (iota), which is
the integrated difference between the two signature
halves whereby one half is inverted, whereby the point
of havening is the total maximum of the radii Rmax.
The other measure is the minimum of the (absolute)
derivative for the (ordered) maximum radii:

y = 1− ι−min(∆Rmax). (34)

The symmetry is largest for any shape, that has at
least two equal angles such as an isosceles triangle, a
kite shape and so on.
• Gap Size, ωd, ω∠: the gap size - if present - is

included as dimensions as well by the spatial and an-
gular separation between the endpoints, ωd and ω∠.
The angular separation may be zero but there may
exist a spatial separation, in which case the curve
corresponds to the beginning of a spiral shape.
• Concavity, εo The concavity bias is determined

by observing the difference between maxima’s half-
points and the radii minima Rmin. The halfpoints are
taken for the neighboring maxima points and their
radii Rmxh

i to the pole measured. From those, the
minima radii are subtracted and only the positive d-
ifferences are integrated:

εo = tanh
(∑

i

max(Rmxh
i −Rmin

i , 0)
)

(35)

The value is zero if the shape is convex and increases
with concavity.

additional parameters are the degree of concavity,
which is determined by the fraction of the signature
whose course is in reverse direction to the dominant
direction; the above-mentioned weight value w; the
standard deviation of the angular directions of the
corners; the angular gap, which is above zero in case
of a horse-shoe shape; the mean, minimum, maxi-
mum and standard-deviation value for the maxima
and minima radii (Rmax and Rmin); and the mean,
minimum, maximum and standard-deviation value
for the maxima and minima in the second derivative.

The entire parameterization is of relatively low
complexity O(NK), with N the number of isocon-
tours and K the number of operations to arrive at
the variety of structural parameters.

Implementation and Selection Isocontours
from different spatial (image) scales were extracted.
For each one the concavity measure is determined
and isocontours with large concavity values discard-
ed. No other selection takes place - in contrast to

pair or quad formation - as there is no combinatioral
complexity involved.

Algorithm 4 Generating shape vectors.

Input : I, list of isocontours
Output: fl, list of shape vectors
1) Determine concavity for all isocontours and se-
lect low-concavity ones → F .
2) Generate vector f for each element ∈ F (eq. 36)

Vector Formation The following vector is then
formed:

f(o, r, η, y, ωd, ω∠, s̆a, s̆2, s̆3, s̆4, s̆5, {apps}), (36)

whereby o is the angular orientation of the global
maximum’s directional angle; r is the average of the
(unnormalized) signature, normalized here by the im-
age dimensions.

Figure 8 shows the results of a retrieval task where
different biases are preferred to illustrate that the
vector space is a good approximation to the various
shapes.

5 Clusters

Two types of clusters are developed, clots and bun-
dles. Clots are clusters of short segments which fre-
quently occur in texture or at intersections of object
parts such as T or X junctions. Bundles are clusters
of long segments and specifically aim at describing a
group of parallel aligned segments. Pairs express the
detailed geometrical alignment of two segments.

5.1 Clots

Clots are formed in two phases: first, clusters of
(short) segments are identified using a traditional
cluster method; then, the alignment of the cluster-
s’ segments is characterized.

1) Identification Clots are identified by a hier-
archical cluster analysis of the segments’ midpoints,
see algorithm 5. The pairwise distances Dp be-
tween the (short) segments’ midpoints is taken (p =
1, ..nPairs) and their nearest neighbor distances de-
termined DNN

j (j = 1, .., nShort; nShort the number
of sort segments). Hierarchical clustering is per-
formed with the pairwise distances Dp using an aver-
age linking method and a cutoff distance whose value
is twice the average of the nearest neighbor distances,

2
nShort

∑
j D

NN
j . Only clusters of 3 or more segments
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Figure 8: Sorting shape vectors along different di-
mensions (aspects). In each row one dimension value
was systematically increased (in the upper right of
each subplot the actual and not the preset value is
displayed). Top row: increasing (inc.) elongation (η)
value. 2nd row: inc. η value for a two-corner polygon
2; 3rd row: inc. η value for a three-corner polygon.
4th row: inc. η value for a five-corner polygon. 5th
row: inc. η value for a circular shape.

are retained. This clustering procedure generates sev-
eral tens of clusters per image, with each cluster con-
sisting of a list of segments, see figure 9 for an exam-
ple.

2) Alignment The alignment analysis focuses in
particular on radial and orientation statistics. For the
radial statistics, the cluster center, now called pole, is
determined to be the average of the midpoint coordi-
nates. The radii between the pole and midpoint coor-
dinates is taken, Rl, l = 1, .., ncs, with ncs the number
of segments; the following measures were defined: the
minimum radius rmin, the maximum radius rmax, the
mean radius rµ, the standard deviation of the radii
rσ. From the array of segment lengths the mean and
standard deviation is taken, lµ and lσ resp.

In the orientation analysis, three principal type-
s of alignments are determined: uni-orientationality,
where segments have similar orientation; null-

Algorithm 5 Clot formation.

Input : S, list of segments
Output: ck, list of clot vectors
1) Select short segments using median length value
→ Sshort

2) Pairwise midpoint distances Dp,∀ ∈ Sshort
3) Hierarchical clustering with Dp

and corresponding NN distances DNN
j

4) Linking with average method and cutoff
distance t = 2

nShort

∑
j D

NN
j , → Call

5) Select clusters with ≥ 3 segments: Call → Cr
Generate vector c for each clot ∈ Cr (eq. 40)

orientationality, where segment orientations cover
roughly the entire range; cross-orientationality, where
segments are aligned in a T or X pattern. To dis-
criminate between these alignments a 4-bin histogram
H(o) is generated, whose bins are centered at 0, 45,
90 and 135 degrees.
• Uni-Orientationality, op : measures the degree

of same orientation by dividing the histogram’s peak
amplitude by the number of cluster segments

op = max
o

(H(o))/ncs − 1
4 , (37)

whereby we subtract 1
4 to account for a flat distri-

bution. The measure does not account for unequal
segment lengths.
• Null-Orientationality, o∗ : expresses how dis-

tributed the orientations are and is maximal if all
orientation occur with equal frequency in which case
the value is 1,

o∗ = 2− maxo(H(o))

ncs/4
, (38)

otherwise it decreases with increasing ’peakness’ in
the histogram. Negative values are set to zero.
• Cross-Orientationality, o+ : expresses group-

s with two principal orientations, e.g. T or X
alignments, which we can recognize by determining
whether the histogram is bimodal. The measure is
the ratio between the two maximal peak values

o+ =

{
max2

o(H(o))
maxo(H(o)) , H is bimodal

0 , otherwise.
(39)

whereby max2 denotes the amplitude of the second
mode.

If the value for uni-directionality is larger than the
other two values o∗ and o+, then we set the cluster’s
dominant orientation angle ô to the orientation angle
o of the longest segment, otherwise the value is not a
number.
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With the above attributes a descriptor vector is
formed:

c(rmin, rmax, rµ, rσ, lµ, lσ, ô, o
p, o∗, o+, {app}). (40)

where {app} represents an array of simple appearance
parameters as introduced in (Rasche, 2010).
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Figure 9: Example of clots and bundles for a face
image of the Caltech101 collection (upper and lower
graph resp). In both graphs the edge pixels are of
light-gray luminance; the short and long contours of
dark-gray luminance. Clots: cluster centers marked
with squares, triangles and stars. Bundles: pairs
marked with a square; groups of 3 or more marked
with a filled square.

5.2 Bundles

Bundles are formed similar to clots, but with a fo-
cus on finding segments that lie approximately par-
allel. Pairwise distances Dp are again taken with the
segment midpoints, but a selection of pairs is made,
based on the pairwise length and bendness differ-
ences, see algorithm 6 for details:

Algorithm 6 Bundle formation.

Input : S, list of segments
Output: bk, list of bundle vectors
1) Select long segments using median length value
→ Slong

2) Pairwise midpoint dists Dm
p ,∀ ∈ Slong

Pairwise length differences Dl
p = l1−l2

l2

Pairwise bendness differences Db
p = b1 − b2

3) Exclusions: Dm
p > l2/2;Dl

p > 1;Db
p > 1 :→ Dr

4) Hierarchical clustering with Dr

and corresponding NN distances DNN
j

5) Linking with average method and cutoff
distance t = 2

nShort

∑
j D

NN
j , → Bl

6) Singleton clusters are excluded → Bk
Generate vector b for each bundle ∈ Bk

A bundle vector b similar to the clot vector was
formed, but which also included simplest bendness
statistics of the segments:

b(o, f, rmin, rmax, rµ, rσ, lµ, lσ, bµ, bσ, {app}). (41)

where o is the dominant orientation, f the segment
frequency, bµ the mean bendness and bσ the standard
deviation of the bendness values.

6 Textures

Texture descriptors are generated from regions that
are outlined some descriptors. In particular, the
regions from three types of descriptors are taken:
from segments of minimal curvature; from pairs,
whose segments are approximately vis-a-vis; from any
shape. The regions are of varying size ranging from
several pixels to large image patches. Motivated by
the popularity of the SIFT features, we had tried
a matching with histograms of intensity gradients -
where gradients are taken from the region - , but
it did not appear very fruitful. There may be t-
wo reasons: one is that due to the varying region
sizes, it is difficult to find a meaningful distance mea-
sure, even if the histograms are normalized for region
size; a second reason may be that many regions do
not contain ’interesting’ textures, as opposed to the
ones centered around ’interest points’ and thus a his-
togram of gradients does not properly capture the
texture properties of our selected regions. We there-
fore use a parameterization of the output of various
types of image preprocessing, called texture parame-
ters hereafter. One could perform matching with only
those texture parameters, but we had observed that
if one includes some geometric parameters from the
descriptor that outlines the region, that classification
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performance increases. We therefore append the tex-
ture parameters to the geometric parameters of the
descriptors, whereby some geometric parameters are
omitted. We thus generate three types of texture de-
scriptors, arc texture ta, pair texture tp and shape
texture ts, which all share the same set of texture pa-
rameters, but distinguish themselves from some geo-
metric parameters that can be regarded as silhouette
parameters. We firstly elaborate on the types of im-
age preprocessing we use (subsection 6.1). Then we
specify what parameters are extracted from each re-
gion (subsection 6.2). Finally we describe how regions
are selected and what type of silhouette parameters
are used for building the region vectors (subsection
6.3) .

6.1 Image Preprocessing

The image is analyzed in four different ways:

Intersection Count: The locations where con-
tours intersect are detected and for each location the
number of intersecting contours is determined. This
is done with the contour image - the binary image
with edgel information: it is convolved with a 3x3
summation mask resulting in an intersection map,
whose conspicuous values are: 1, contour terminates;
4, 5 and 6: 3, 4 and 5 contours intersect, respective-
ly. This intersection detection is done for all scales at
which contours are extracted, typically σ=1,2,3 and
5.

Difference-of-Gaussians (DOGs): Three mask
sizes are used: 3, 5 and 7 pixels with standard de-
viation σ = 1

2 ,
5
6 ,

7
6 for the center Gaussian and

σ = 3
4 ,

5
4 ,

7
4 for the surround Gaussian. Positive

and negative DOGs are formed, totaling thus 6 DOG
maps.

Blobs: Blobs are defined as thresholded DOGs in
order to detect true center-surround patches. The
same sizes as for DOGs are used and the mean of
the center is required to exceed or undershoot the
positive and negative DOGs respectively, resulting in
6 blob maps.

Topology: The intensity landscape is character-
ized according to 3 different, basic topologies. At
each pixel, the local neighborhood is analyzed for its
degree of rampness, foldness and uneveness. Ramp-
ness describes whether the intensity patch is an in-
cline. Foldness describes whether the patch contains
a ridge or ravine. Uneveness describes an irregular
surface. These topologies can be estimated by a mod-
e analysis of the gradient histogram of the patch. For
rampness, the gradients point into a similar direction
and the histogram therefore is unimodal with a high
amplitude. For foldness, the gradients point into t-

wo directions and the histogram is therefore bimodal.
For uneveness, the gradients point into all directions
and the histogram has a low amplitude.

6.2 Region Parameterization

For each selected region, two sets of parameters are
generated, appearance parameters and topology pa-
rameters, whereby this distinction is made to empha-
size the novelty of the latter set. The former set rep-
resents traditional measures of ’appearance’ and are
structurally not very specific, whereas the latter are
novel and structurally more explicit.

Appearance: area a of the region; standard devi-
ation σr of the region’s intensity values; range (con-
trast) cr of intensity values; the count of intersections
for each conspicuous value, i1, i4, i5 and i6; average
values are formed for the values for each DOG and
blob map, {δ1, .., δ6} and {β1, .., β6} respectively:

txtapp = {a, σr, cr, i1, i4, i5, i6, δ1, .., δ6, β1, .., β6}
(42)

Topology: average fold value tf ; degree of eleva-
tion t̂of the region’s intensity landscape, which is de-
fined as the positive intensity difference between the
center values and the surround values - it is quasi a
difference-of-regions, where the inside is obtained af-
ter some erosion of the region and the outside is the
difference between the region and the inside; degree
of sinkness t̆, which is the negative equivalent of the
degree of elevation; average uneveness value t̃; aver-
age rampness value tr:

txttop = {tf , t̂, t̆, t̃, tr} (43)

The two vectors are concatenated and appended to
some geometric values describing the regions silhou-
ette, which is explained next.

6.3 Selection and Vectors

For all three texture types (segment, pair or shape)
a minimal area is required. For segments, arcs with
a minimal bendness and a maximal transition val-
ue are selected. The segment region vector consists
of selected geometric parameters (orientation, length,
arc, bendness,...see (Rasche, 2010)) and the texture
parameters introduced in the previous subsection:

ta = (o, l, a, b, ..., {txtapp}, {txttop}) | a > 0, t < 0.2,
(44)

Pairs, whose segments are approximately parallel,
vis-a-vis and reasonably proximal are preferred. This
preference is obtained by omitting pairs with a pos-
itive value for the T-bias, the collinearity bias and
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the intersection bias; and pairs with a low proximity
value. A pair region vector tp is generated with geo-
metric parameters omitting the biases that had been
excluded; the same texture parameters are added as
for the segment region vector (eq. 44). A shape re-
gion vector ts is generated analogously. Algorithm 7
summarizes the process.

Algorithm 7 Selecting regions and their texture pa-
rameters.

Input : S, P, F , list of segs, pairs and shapes
Output: ta, tp, ts

1) Image preprocessing: → intersection map, DOG
map, blob map, topology map
2) Select appropriate regions from S, Pand F and
some of their geometric parameters (silhouette ge-
ometry)
3) Generate texture parameters for each region
txtapp and txttop from the maps
4) Create vectors ta, tp, ts consisting of texture and
silhouette parameters (e.g., eq. 44)

7 Implementation

The entire system was implemented in Matlab. Con-
tours are extracted with the Canny algorithm at four
different spatial scales (σ = 1, 2, 3, 5) and then par-
titioned into segments and described as in (Rasche,
2010). A typical image contains several hundred seg-
ments, see figure 10, right column, descriptor labeled
’Seg’. For each segment, a number of appearance
parameters (contrast, fuzziness,...) are extracted,
which were based on simple luminance statistics, see
(Rasche, 2010) for details. Those are abbreviated as
{apps} in the vector equations 20, 27, 36, 40 and 41.
The total duration for generating all descriptors is 30
seconds per image on a 3.33GHz processor (see also
table 3), of which half of it is taken by the grouping
processes. A total of 278 parameters is generated, see
lower left in figure 10; the right column also shows
that the majority of descriptors are pairs and quad-
s. As most attributes are defined in unit range, only
some dimensions required normalization. The vari-
ances (left column, figure 10) show that the statistics
for the collections appear the same.

8 Classification

There is a variety of classification methods that one
can use for descriptions with unequal list lengths. A
simple and successful principle is to search for clusters

Table 3: Description and representation summary.
Desc: descriptors; Att: attributes; CatEnsemb: cate-
gory ensemble. ncat: number of categories. Duration
determined on a 3.33GHz processor.

Total No Attributes 278
Grouping Complexity O(N2), N = key-

points
Grouping Duration 15 sec (3.33GHz)
Tot Dur Desc Extraction 30 sec
Size/Image (≈ 250×250 pix):

No Desc × No Att ≈ 4000 × 31
Dim Img Vect → after PCA 2780 → ≈ 2 · ncat

Size/CatEnsemb
No HypPlanes × No Att ≈ 90 × 31
→ after PCA → ≈ 20 · ncat
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Figure 10: Descriptor variance and count per im-
age for three collections (first three rows). The
descriptor variance is the average across its dimen-
sions variances. The descriptor count is per image;
the small errorbars denote the inter-image variation;
the large errobars denote the minima and maxima.
Lower left: dimensionality (no. of attributes) per
descriptor for comparison.

in the entire collection, in which case all lists are con-
catenated; a representative example would be clus-
tering with a k-means procedure followed by a classi-
fication of the detected clusters and this is generally
known as the bag-of-words approach, e.g. (Sivic and
Zisserman, 2003; Perronnin et al., 2006; Philbin et al.,
2007). A slightly more refined classification method
is the search for unique features such as carried out
by an adaboost technique - also performed on a con-
catenated list; the most famous example is the face
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detection system by Viola and Jones (Viola et al.,
2005). And there can be many combinations of the
individual steps of these classification principles.

We had tried a clustering by the k-means method,
but the classification accuracy was moderate only.
The reason maybe that this type of quantization is
too unspecific for our type of descriptors; which pos-
sess much lower dimensionality (up to ca. 40) as op-
posed to the typical 128-dimensional SIFT or other
related descriptors (Lowe, 2004). The method of fea-
tures selection using Adaboost turned out to be more
succesful (subsection 8.2). But we will also report ac-
curacies with a simple statistical classifier using only
image vectors (subsection 8.1) with which one can
obtain quick yet still reasonable results.

8.1 Image Vector Classification

For a list of descriptors ai(d) we generated a 10-bin
histogram Hd for each attribute d (d = 1, .., nDim,
number of dimensions). The attribute histograms for
different descriptor types were then concatenated to
form a high-dimensional image vector HI , whose size
could be several hundred components. Thus, there
is no use of the multi-dimensionality of the individu-
al vectors per se; the histogram is a mere statistical
description of the descriptor attributes present in an
image. The principal component analysis (PCA) was
used to optimize the separability between categories.
A linear discriminant analysis (LDA) worked best on
the image vectors.

8.2 Ensemble Classification

In an ensemble classifier the decision is based on sev-
eral weak classifiers - as opposed to a single ’strong’
classifier as in the LDA for example. To learn
the weak classifiers we apply the adaptive boosting
method, which specifically concentrates on the mis-
classified examples in the training set and learns as-
sociated weights in a systematic way (Schapire and
Singer, 2000; Breiman, 1998).

Viola and Jones introduced this methodology to
the computer vision community with their rapid face
detection system (Viola et al., 2005). They specifical-
ly used single-node decision trees (decision stumps) as
weak classifiers, but applying such decision stumps to
individual dimensions did not yield good accuracies
in our case. Instead we used a pooled decision of the
decision stumps for individual dimensions. We firstly
explain the classifier we built and then the boosting
(learning) procedure we used.

Classifier Given a single entry v of a descriptor
vector a (from list ai), the decision stump evaluates
whether the value lies on the correct side of a certain
threshold θ

t(v, p, θ) =

{
1 , v > pθ

0 , else,
(45)

whereby p stands for the polarity of the inequality.
θ and p are adjusted during learning by seeking the
optimal discrimination between one category k and
all others. We then integrate the stump outcomes
across dimensions to arrive at a descriptor activation
value h,

h(a,p,Θ) =

nDim∑
d=1

t
(
a(d),p(d),Θ(d)

)
, (46)

where Θ(d) can be regarded as an hyperplane sepa-
rating one category from all others, p(d) is the array
of polarities. For a category, a number of hyperplanes
nL is determined and their activation values integrat-
ed and weighted to form a descriptor confidence value
c

c(a,pl,Θl) =

nL∑
l=1

h(a,pl,Θl)w(l), (47)

whereby weights w are normalized to one,
∑
l w(l) =

1. This integration corresponds to the so-called
strong classifier in the terminology of ensemble clas-
sifiers. The posterior for a category is calculated as
the mean confidence value of all nDesc descriptors of
an image,

P =

nDesc∑
i=1

c(ai,pl,Θl)/nDesc. (48)

We used two types of classification. One is used dur-
ing learning, which occurs by taking the maximum
value across the posterior values argmaxkPk. An-
other one is used during classification of the vali-
dation set: we found that using the posterior val-
ues for each category and descriptor type (segment,
pair, texture,...) as input to the LDA yielded sub-
stantially better accuracy; to clarify, the length of
the ’feature’ vector for classification was the number
of descriptor types times the number of categories
V = {P s1 , P s2 , .., P snK , P

p
1 , P

p
2 , .., P

p
nK , ...} (s=segment,

p=pair, etc.). This means that how an image re-
sponded to other category representations was valu-
able information to obtain better discrimination.

Adaptive Boosting In the adaptive boosting
learning procedure, a sample is reused in a weight-
ed manner according to the evolving classification
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accuracy during training. In our case, we adjust a
descriptor weight s(i) (significance) after each learn-
ing round. The weight is included when we deter-
mine the optimal threshold θ and polarity p: t takes
the value of s(i) instead of only 1 in equation 45 -
if the value lies on the right side of the inequality.
Once an optimal threshold and polarity is found, the
threshold values t are integrated across dimensions
and descriptors (for a category) and that determines
weight w(l). After each learning step l, the descrip-
tor weights s(i) of misclassified images are adjusted
by increasing their value by a small amount.

9 Evaluation

9.1 Image Collections

Evaluation took place on three different image collec-
tions, the Urban&Natural collection (Oliva and Tor-
ralba, 2001), the Caltech101 (Li et al., 2006) and the
Landuse collection (Yang and Newsam, 2010). The
Urban&Natural collection contains 8 super-ordinate
categories (mountain scene, forest scene, street scene,
highway scene,...) and were classified with 80 per-
cent correct using a modified Fourier transform as
preprocessing (Oliva and Torralba, 2001). The Cal-
tech101 collection contains mostly objects in close-up
view (football, ying-yang sign, accordeon,...), some
are embedded in a scene (e.g. cheetahs, anchors);
they were correctly classified with roughly 70 percent
by different methods (see figure 6 in (Kapoor et al.,
2010) for a summary). The Landuse collection consist
of satellite images depicting 21 categories (Yang and
Newsam, 2010) (street intersections, forest, agricul-
tural fields,...) and were correctly classified with ca.
81 percent by a bag-of-features approach, with fea-
tures being SIFT features (Yang and Newsam, 2010).

9.2 Image Vector Classification

With a 6-fold cross validation we reached 75 percent
correct classification for the Urban&Natural collec-
tion, 77 percent for the Landuse collection and 40
percent for the Caltech101 collection, see horizontal
lines in figures 11 and 12; the third row in table 4
summarizes the classification accuracies with the im-
age vector. The contribution of the individual de-
scriptors was estimated once with a classification in
which a single descriptor was knocked out (figure 11)
and once with a classification using an individual de-
scriptor only (figure 12).

A knockout performance below or above the perfor-
mance for full-dimensionality (solid line) stands for a
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Figure 11: Classification accuracy when single de-
scriptors are knocked out in the image vectors (Ur-
ban&Natural, Landuse, Caltech101). Horizontal sol-
id and dotted lines represent performance for full di-
mensionality plus standard error for 6 folds.

more or less significant descriptor, respectively (fig-
ure 11). For the Urban&Natural and the Caltech101
collection there are descriptors that contribute signif-
icantly, e.g. the pair descriptor, or the arc descriptor
for the Urban&Natural collection; for the landuse col-
lection, all descriptors contribute significantly.

Looking at the individual-descriptor performance
(figure 12), we observe that even individual perfor-
mances almost reach the performance for full dimen-
sionality for the Urban&Natural collection, but are
are significantly lower for the other two collections.

As the descriptors occur with different count per
image and have different dimensionality (figure 10),
one can analyze how expressive the individual de-
scriptors are. We define the ’expressiveness’ as the
classification accuracy - as shown in figure 12 - di-
vided by the number of descriptor dimensions (at-
tributes) and the number of descriptors. Figure 13
shows that the clot and bundle descriptors exhibit
the largest degree of expressiveness.

9.3 Ensemble Classification

With ca. 10 learning steps (hyperplanes, nL), we
obtained a classification accuracy of ca. 81 percent
for the Urban&Natural collection - for fewer or more
learning steps the accuracy decreased. The optimal
dimensionality for V consisted of 22 dimensions - af-
ter application of the PCA. For the Landuse collec-
tion we used ca. 15 learning steps and an optimal
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Figure 12: Classification accuracy for individual de-
scriptors only (as image vectors).
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Figure 13: Descriptor expressiveness. Classification
accuracy divided by dimensionality and descriptor
count.

dimensionality of ca. 56 dimensions to achieve a cor-
rect classification of 82 percent. For the Caltech101
collection we used ca. 20 learning steps and an opti-
mal dimensionality of ca. 150 components to achieve
a correct classification of ca. 50 percent.

The fourth row in table 4 summarizes the classifi-
cation accuracies.

9.4 Varia

We have not tested the contribution of the individual
attributes of each descriptor type as it is computa-
tionally too demanding to carry out a feature selec-

Table 4: Summary of classification accuracy. Bmk:
benchmark; Img Vect: PCA/LDA on image vectors;
Cat Rep Desc: hyperplanes (decision stumps) on
desciptor spaces. All percentages are rounded.

Collection Bmk Img Vect Cat Rep Desc

Urb&Nat 80% 75% (-5%) 81% (+1%)
Landuse 81% 77% (-4%) 82% (+1%)
Calt101 70% 40% (-30%) 50% (-20%)

tion procedure wrapped around the slow adaboost
learning procedure. It may well be that some pa-
rameters are insignificant in one or the other image
collection. But in general, the addition of parameters
always improved performance. This is most evident
for the descriptor knock-out for the landuse collec-
tion (figure 11), where a decrease in categorization
performance by more than 10 percent occured for ev-
ery omitted descriptor; it is therefore likely that the
majority of individual attributes contributes to dis-
crimination of categories in that collection. The co-
variance matrices for the dimensions (attributes) of
each descriptor generally do not show any strong de-
pendencies.

10 Discussion

Some of the group types we have tested correspond
to groups that had been proposed previously, name-
ly pairs of segments and clusters of parallel segments
- the latter are called bundles in our case. What is
completely new is that we carry out an exhaustive
geometric characterization for the purpose of match-
ing. Other group types are completely new, such as
the quad descriptor - pairs of pairs - and the shape
descriptor. The clot descriptor is a mixture of a struc-
tural and a textual descriptor. The presented geomet-
ric parameterization can be regarded as an example of
how an alignment of segments can be characterized.
While the pair descriptor is meanwhile relatively well
developed and its parameterization occurs relatively
elegant by correlating symmetry measures (table 2),
the other descriptors may certainly profit from refine-
ment and further testing.

It was shown that this structural information can
be exploited in a classification task. The classifica-
tion accuracies are comparable to other systems. The
classification with image vectors already showed re-
spectable results and in case of the Urban&Natural
and the Landuse collection, the results are near the
benchmark; this type of classification has the advan-
tage that it occurs fast. When using an ensemble
classifier, the accuracies increase to the level of some
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benchmarks: the benchmarks for the Urban&Natural
and Landuse collection were just exceeded; the one
for the Caltech101 collection still lags somewhat.

The results with knock-out and individual descrip-
tors (figures 11 to 13) have to be interpreted with
care as those were obtained with image vectors only.
As pointed out, such an analysis for the slow ensem-
ble classifier is unfeasible. A feature selection based
on those results may be beneficial if one intended to
optimize the classification with image vectors, but for
classification with ensembles exploiting the descriptor
space, this may be the wrong direction for optimiza-
tion. Nevertheless, we dare the following interpre-
tations: clusters of segments, such as the clot and
bundle descriptors, show a high degree of expressive-
ness as they are geometrically not as precise as other
descriptors and thus more flexible to express catego-
ry variability. This does not need to be an indication
that the other descriptors should be less specific in
their geometric description, as it is exactly that speci-
ficity which may be the key to increase the separation
between categories. Only extensive testing and anal-
ysis can shed more light on the expressivness of the
individual descriptors.

Comparison to Gradient Histogramming As
classification with histograms of intensity gradients
is so dominant and successful, we draw further com-
parison to that methodology, in particular on the as-
pects of descriptor generation, learning and matching
duration, as well as representation size:

- Descriptor generation: the generation of his-
tograms with intensity gradients is of low complexity.
Our descriptor generation is substantially more com-
plex: the most time consuming part is the curve par-
titioning process and is necessary to understand the
exact ’bends’ that a contour exhibits: the method has
therefore the advantage that the contour segments
can be immediately used for interpretation of object
outlines. The duration for the grouping operations
presented in this study is smaller than the one for
the partitioning process, as the pairwise analysis of
segments relies only on its keypoints.

- Matching duration: matching with gradient his-
tograms can be relatively fast if indexing structures
(e.g. kd-trees) are used, something which could al-
so be tested with our descriptors in principle. But
since our category representation is relatively small,
the matching duration is negligible.

- Learning duration: in the gradient-
histogramming approach often employs a k-means
clustering algorithm to create a bag-of-words rep-
resentation, a procedure of O(N) complexity with
N the number of descriptors. The duration in

our system is not immediately comparable, but
we estimate it of similar complexity as no actual
distance measurements are taken in our learning
scheme.

- Representation size: in the gradient-
histogramming approach, image descriptions can
consist of several thousands vectors. Our image
description is equally vast, but our dimensionality is
less than half the one of the gradient vectors taking
the original histograms of dimensionality 144 as a
comparison (Lowe, 2004). Recent approaches are
able to reduce this dimensionality substantially and
may thus be comparable to our representation in
size. Our category representations are however much
smaller, consisting of only tens of stumps (decision
planes).

The comparison to systems classifying with gradi-
ent histograms can be put succinctly as follows: our
system requires much more preprocessing, but the
category representations are relatively small and clas-
sification can therefore occur relatively quickly.

References

Blum, H. (1973). Biological shape and visual science
.1. Journal Of Theoretical Biology, 38(2):205–287.

Borra, S. and Sarkar, S. (1997). A framework for perfor-
mance characterization of intermediate-level group-
ing modules. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 19(11):1306–1312.

Breiman, L. (1998). Arcing classifier (with discussion
and a rejoinder by the author). The annals of s-
tatistics, 26(3):801–849.

El-ghazal, A., Basir, O., and Belkasim, S. (2009). Far-
thest point distance: a new shape signature for
fourier descriptors. Signal Processing: Image Com-
munication, 24:572–586.

Ferrari, V., Fevrier, L., Jurie, F., and Schmid, C.
(2008). Groups of adjacent contour segments for ob-
ject detection. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 30(1):36–51.

Ferrari, V., Jurie, F., and Schmid, C. (2010). From im-
ages to shape models for object detection. Interna-
tional Journal of Computer Vision, 87(3):284–303.

Halsted, G. (1896). Elementary Synthetic Geometry.
John Wiley and Sons Inc, New York.

Iqbal, Q. and Aggarwal, J. (2002). Retrieval by classifi-
cation of images containing large manmade object-
s using perceptual grouping. Pattern Recognition,
35:1463–1479.

Jacobs, D. (1996). Robust and efficient detection of
salient convex groups. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 18(1):23
– 37.

22



Kapoor, A., Grauman, K., Urtasun, R., and Darrell,
T. (2010). Gaussian processes for object categoriza-
tion. INTERNATIONAL JOURNAL OF COM-
PUTER VISION, 88:169–188.

Li, F., Fergus, R., and Perona, P. (2006). One-shot
learning of object categories. IEEE TRANSAC-
TIONS ON PATTERN ANALYSIS AND MA-
CHINE INTELLIGENCE, 28(4):594–611.

Lowe, D. (2004). Distinctive image features from scale-
invariant keypoints. INTERNATIONAL JOUR-
NAL OF COMPUTER VISION, 60(2):91–110.

Lowe, D. G. (1985). Perceptual organization and visual
recognition. Kluwer Academic Publishers, Boston.

Mohan, R. and Nevatia, R. (1992). Perceptual orga-
nization for scene segmentation and description.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 14:616–635.

Oliva, A. and Torralba, A. (2001). Modeling the shape
of the scene: A holistic representation of the spatial
envelope. Int. J. Comput. Vis., 42(3):145–175.

Perronnin, F., Dance, C., Csurka, G., and Bressan,
M. (2006). Adapted vocabularies for generic visu-
al categorization. In Proceedings of the 9th Euro-
pean conference on Computer Vision - Volume Part
IV, ECCV’06, pages 464–475, Berlin, Heidelberg.
Springer-Verlag.

Peura, M. and Iivarinen, J. (1997). Efficiency of simple
shape descriptors. In Third International Workshop
on Visual Form, pages 443–451, Capri, IT.

Philbin, J., Chum, O., Isard, M., Sivic, J., and Zis-
serman, A. (2007). Object retrieval with large vo-
cabularies and fast spatial matching. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition.

Rasche, C. (2010). An approach to the parameteriza-
tion of structure for fast categorization. Interna-
tional Journal of Computer Vision, 87:337–356.

Renninger, L. and Malik, J. (2004). When is scene i-
dentification just texture recognition? Vision Re-
search, 44(19):2301–2311.

Sarkar, S. and Boyer, K. (1993). Perceptual organiza-
tion in computer vision: a review and a proposal for
a classificatory structure. Systems, Man and Cyber-
netics, IEEE Transactions on, 23(2):382 – 399.

Schapire, R. E. and Singer, Y. (2000). BoosTexter:
A Boosting-based System for Text Categorization.
Machine Learning, 39(2/3):135–168.

Sivic, J. and Zisserman, A. (2003). Video google: A tex-
t retrieval approach to object matching in videos. In
Proceedings of the Ninth IEEE International Con-
ference on Computer Vision - Volume 2, ICCV ’03,
pages 1470–, Washington, DC, USA. IEEE Com-
puter Society.

Viola, P., Jones, M. J., and Snow, D. (2005). Detecting
pedestrians using patterns of motion and appear-
ance. International Journal of Computer Vision,
63(2):153–161.

Willmer, P. (1990). Invertebrate Relationships : Pat-
terns in Animal Evolution. Cambridge University
Press, Cambridge.

Witkin, A. and Tenenbaum, J. (1983). On the role
of structure in vision. In Beck, J., Hope, B., and
Rosenfeld, A., editors, Human and machine vision,
pages 481–543. New York: Academic Press.

Yang, Y. and Newsam, S. (2010). Bag-of-visual-words
and spatial extensions for land-use classification. In
Proceedings of the 18th SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, pages 270–279. ACM.

Zhang, D. and Lu, G. (2005). Study and evaluation of
different fourier methods for image retrieval. Image
and Vision Computing, 23:33–49.

Zhu, Q., Wang, L., Wu, Y., and Shi, J. (2008). Con-
tour context selection for object detection: A set-
to-set contour matching approach. In Lecture Notes
in Computer Science.

23


