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Abstract

A shape matching approach is introduced, which is
based on a novel curve description, namely a (lo-
cal/global) amplitude space. Two matching princi-
ples are tested with this description. First, a point-
based (correspondence) matching is carried out with
the entire amplitude space, for which the MPG7 re-
trieval score is 78.74%. Second, a segment-based
matching with abstracted boundary segments is in-
troduced, with the goal to move away from the typical
constraints of point-based matching. Those segments
are obtained by analyzing the local/global space. The
retrieval score for this type of matching is 70.48% and
although it is lower than the former, it can be applied
to gray-scale images. When the two matching metrics
are combined, a retrieval score of 84.80% is obtained,
which is near top-performing, reported methods. Us-
ing an optimization method for the distance matrix,
the score can be driven up to 95.01% (2nd best re-
ported so far). The particular advantage of the pre-
sented approach is that it allows part interpretation
(irrespective of the matching type).

Keywords: arbitrary shape, retrieval, classifica-
tion, radial description, MPG7

1 Introduction

Shape matching systems for arbitrary shape retrieval
use either point-based and/or segment-based match-
ing methods. By point-based is meant the exhaus-
tive point-to-point correspondence matching. Point-
based matching is the prevailing matching principle
and can be exploited for either aligning and/or for
discriminating between two shapes, e.g. (Belongie
et al., 2002; Sebastian et al., 2003; Grigorescu and
Petkov, 2003; Mokhtarian and Bober, 2003; Jalba
et al., 2006; Adamek and O’Connor, 2004; Ling and
Jacobs, 2007; Daliri and Torre, 2008; Xie et al., 2008;
Xu et al., 2009; Gopalan et al., 2010; Raftopoulos

and Kollias, 2011). Although powerful descriptions
exist meanwhile for this type of matching, there are
a number of short-comings associated with it:
1) Lack or limited robustness to fragmentation: the

systems often require that the shape is a closed curve
and they can therefore not be easily applied to gray-
scale images, where shapes appear mostly fragmented
due to ’noise’.
2) Lack of part interpretability: the systems of-

ten cannot identify shape parts and their relations,
which however would be essential for manipulating
the shapes (e.g. a robot trying to understand shapes
for interacting with them).
3) Long matching duration: point-to-point mea-

surements are inherently time-consuming; their algo-
rithmic complexity is square O(N2), and if a closed
curve is tested, it is of cubic complexity O(N3)
(N=number points).
There are attempts to alleviate those problems.

For instance, Ghosh and Petkov (Ghosh and Petkov,
2005) have pleaded for testing shape recognition
systems with fragmented shapes and presented the
incomplete-contour representation (ICR) test; their
own solution appears to be robust, but remains
a point-based recognition system. Schmidt et al.
(Schmidt et al., 2007) have developed an optimized
point-based matching procedure, specifically a faster
minimization method to find the proper global align-
ment of two shapes . Or one can use feature
points (landmarks) to reduce the number of align-
ment matchings. Still, those attempts cannot truly
shake off the above limitations.

Segment-based matching systems extract
boundary segments, which are individually matched
amongst two shapes (or a shape and a representation
in case of classification). This is in principle a step
toward escaping the shortcomings of point-based
matching, but many segment-based matching sys-
tems remain footed in the former. For instance,
Latecki and Lakamper introduced a curve evolution
which provides a good degree of part interpretabil-
ity; their segment similarity measure is based on
relating curvepoints (Latecki and Lakamper, 2000).
Felzenszwalb and Schwartz’s system is robust to
fragmentation and was shown to work on contours
obtained from gray-scale images (Felzenszwalb and
Schwartz, 2007); their curve comparison also remains
a point-to-point matching. Daliri and Torre’s shape
matching system uses point-to-point matching only
for aligning two shapes, after which then the shape
is divided into segments of equal lengths, which in
turn are transformed into a symbolic representation
by classifying the segments into 32 types made of
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four discretized radii and eight angles (Daliri and
Torre, 2008). McNeill and Vijayakumar’s system
intentionally refrains from feature extraction and
thus is not suitable for part interpretation (McNeill
and Vijayakumar, 2006).

Some segment-based systems are free from any
point matching. The recognition system by Attalla
and Siy uses a polygonal description, specifically arcs
of equal length (Attalla and Siy, 2005). For each arc
a small number of attributes is determined: the arc’s
chord length, its degree of curvature and its distance
from the shape center. The latter attribute represents
a radial description of the shape. The system however
also relies on the shape being closed. And because
segments are of equal length, a part interpretation is
not possible and the shape description lies in some
sense between point- and segment-based matching.
The complexity of the system is O(N) only and thus
clearly less complex than any point matching system;
it is possibly the most efficient shape recognition sys-
tem with respect to the speed/accuracy tradeoff.

Some of the mentioned systems are summarized in
table 1. The noted complexity is only a principal
complexity and sometimes estimated by us, because
not all studies report an explicit algorithmic estima-
tion. A binary robustness ’rating’ is given, whereby
a plus sign indicates when a system has been shown
to perform also on shapes in contour images. (Ex-
planations for the part rating are given in section 3).
Clearly, all the systems have their advantages and
disadvantages.

Distance Optimization. Recently, efforts went
into postprocessing (optimizing) the distance matrix
(that is generated for pairwise retrieval). The post-
processing is a type of unsupervised learning, that
seeks to decrease the distances between similar shapes
- and thus within-class distances -, and to increase
the distance between dissimilar classes - and thus
extra-class distances. This learning comes in dif-
ferent forms, e.g. (Yang et al., 2009; Kontschieder
et al., 2010; Bai et al., 2010; Ling et al., 2010). We
tested two optimization algorithms. One is the page-
rank related algorithm by Bai et al. (Bai et al.,
2010), which improved Ling and Jacobs’ popular
inner-distance description (Ling and Jacobs, 2007)
by 6.21 percent. Bai et al.’s method is simple to
implement as it essentially consists of a single re-
cursive equation, and it appears to be applicable to
different tasks (Bai et al., 2010). The other opti-
mization algorithm is based on a modified mutual
graph method, by Kontschieder et al. (Kontschieder
et al., 2010). Their method is more complex (and

thus we employed their software package1), but im-
proved the inner-distance description by 8 percent. It
appears more efficient for the task of distance matrix
optimization and reports also much shorter optimiza-
tion duration. We later distinguish between geomet-

ric and optimized distance matrix or retrieval per-
formance, with the former as obtained without any
learning (optimization), and the latter with learning
(see also table 1 for comparison of scores).

Presented Approach The shape description used
here is based on a (multi-resolution) local/global
analysis (Rasche, 2010), in which no modification of
the contour occurs - as opposed to the curvature-
scale space, which is generated by lowpass filtering
the contour and hence creating a fine/coarse scale
(Mokhtarian and Bober, 2003). Contrasting the two
methods in a nutshell: in the curvature-scale space
the tangential curvature for each curvepoint at dif-
ferent fine/coarse scales is determined, whereas in
the local/global analysis the amplitude for a neigh-
borhood (a window centered on each curvepoint) is
determined, and that for different window sizes (lo-
cal/global scale). Because the contour is not modi-
fied in this analysis, the description is very rich. Some
more explanations about this analysis are given later,
but a full treatment is impossible here. One type
of matching presented in this study, is based solely
on this space (section 2) and is thus a typical point-
based matching. Another type of matching is based
on abstracted segments, which were obtained from
the space after partitioning and geometric parame-
terization of the segments (section 3). Segment-based
matching is free of the above mentioned constraints
(of the point-based systems): it does not rely on the
shape being closed, the matching duration is shorter
and it allows part interpretation. For both matching
types, space and segment matching, a retrieval task
on the MPG7 collection is carried out, including an
optimization of the distance matrix. Finally, we also
combine the two methods, which gives us the best
retrieval results on the MPG7 collection (section 4).

2 Space Matching

The type of point-based matching that we car-
ried out, is most similar to the matching sys-
tem by Adamek and O’Connor and also analo-
gous to curvature-scale space matching (Adamek
and O’Connor, 2004; Mokhtarian and Bober, 2003).
Adamek and O’Connor create a fine/coarse scale

1http://vh.icg.tugraz.at/index.php?content=topics/

beyondshape.php
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T Perf. Complexity Unit Principal Parts R Authors

O
p
ti
m
iz
ed

95.96% O(N3) pt ID,Aspect + Ling etal,10
95.01% O(N3) pt/seg LGS/seg vec. combined [proposed]
93.40% O(N3) pt ID,mod/mut Gph + Kontschieder etal,09
93.32% O(N3) pt ID,LCDP,uns GP + Yang etal,09
91.61% O(N3) pt ID Bai etal,10
91.03% O(N3) pt LGS +++ space matching
85.08% O(N) seg segment vectors +++ + segment matching

G
eo
m
et
ri
c
O
n
ly

89.31% O(N3) pt contour flexib. Xu etal,09
87.70% O(N3) pt/seg hier. multi-res. + Felzenszwalb&Schwartz,07
85.40% O(N3) pt inner dist. (ID) + Ling&Jacobs,07
84.93% O(N3) pt MCC Adamek&OConnor,04
84.80% O(N3) pt/seg LGS/seg vec. combined [proposed]
84.33% O(N) seg equal-length segs Attalla&Siy,05
81.12% O(N3) pt CSS ++ Mokhtarian&Bober,03
78.74% O(N3) pt LGS +++ space matching
78.38% O(N3) pt distance sets + Grigorescu&Petkov,03
76.45% O(N)/O(N2) seg/pt parts + Latecki&Lakamper,00
70.48% O(N) seg segment vectors +++ + segment matching

Table 1: Retrieval systems, their Bull’s Eye score (for the MPG7 collection) and their characteristics.
Type: Geometric only (no optimization); Optimized: distance matrix tuned by learning algorithm. Unit:
pt=point, seg=segment. Principal: segs=segments, LGS=local/global space (this study), MCC: multi-
scale convexity/concavity, CSS=curvature scale space. ID=inner distance (incl. shape context); see text
for more abstractions. Parts: part interpretability. Robustness: tested on gray-scale images (gray-scale
applicability).

space from which they derive convexity/concavity
(later collectively called bulginess) by determining
the spatial relation between low-pass filtered curves.
Shape similarity is determined by matching the
signed inter-curve distance spaces and by exploiting
dynamic programming to find the minimum distance.
The method presented here matches the amplitude
scale space. To avoid cubic matching complexity we
reduce the exhaustive alignment search by using the
segments’ midpoints as keypoints (feature points).
Those segments can be obtained from the partition-
ing process (mentioned later), but are not per se used
in the following space matching method.

2.1 Implementation

For a shape contour c(v), with arc length variable
v, 100 equally spaced points were selected. For a
given curvepoint, a window (local neighborhood) of
length ω along the arclength variable v is selected and
the amplitude of the selected segment determined.
The window is shifted through the curve, and the
amplitude is taken for different sizes, hence creating
an amplitude-scale space B(ω, v). The amplitude is
taken only for windows, in which the segment ap-
pears as an arc, meaning all segment points need to

lie on either side of the segment’s chord; otherwise
the amplitude is set to 0. 10 window sizes were se-
lected, ranging from 5 to 79 pixels with an increment
of ca.

√
2 (see also figures 1 and 2 in supplementary

material).

For matching, the space was regarded as a 1000-
dimensional vector; the difference between two shapes
i and j was implemented with the Manhattan dis-
tance: dBij =

∑
ω,v |Bi − Bj |. A partitioned shape

offered in average 20 keypoints (that is segments, see
also section 3; this partitioning comes at little tempo-
ral cost in comparison to the generation of the entire
amplitude space.) Due to various types of variability
(structural, aliasing), the keypoints are not at exactly
the same locations (for shape instances of one class),
causing a decrease in performance in comparison to
exhaustive point-based matching. To compensate for
this variability, the neighboring points around the
keypoints were used for alignment as well: by dilating
2 pixels, the average number of keypoints increased
to 30 (some segments overlap due to extraction at
different scales), which returned a reasonable approx-
imation to an (estimated) full matching. The algo-
rithmic complexity is thus less than cubic, O(< N3).
The resulting distance matrix between two shapes is
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of size m × n, with m and n being the number of
keypoints for each shape. A dynamic programming
approach did not make sense and we simply took the
minimum value of the entire distance matrix. Match-
ing duration with 30 keypoints (along v) was ca. 80
milliseconds for a pair of shapes on a 2.66 GHz Intel
Pentium.

2.2 Evaluation

For each shape, the remaining 1399 shapes were or-
dered according to their increasing distance. Re-
trieval accuracy was measured with the Bull’s eye
score, which counts the number of same-class in-
stances within the first 40 most similar shapes (in-
cluding self-similarity). This count is determined for
all 1400 shape retrievals, summed and divided by
the maximal possible count, namely 28000 (1400*20;
(Latecki et al., 2000)).
The geometric Bull’s eye score is 78.74 percent, see

’space matching’ in table 1. Increasing the resolution
to 200 points for instance, only marginally increased
the performance by ca. 1-2 percent.
The optimized score with the modified-mutual

graph method is 91.03 percent (a gain of 12.29), with
kNN=12 for local scaling normalization, kNN=6 and
c=3.5 for the graph. The class-individual gain can
be up to 50 percent; it is slightly negative for classes
and larger for another (figure 1, upper right).
The optimized score with the page-ranking related

algorithm is 88.36 percent (a gain of 9.62), with
kNN=15 and α=0.4 for local scaling normalization.
As results with this method were consistently lower
by a few percent than the modified-mutual graph
method - as can be assumed from the comparison of
the two methods on the inner-distance method - they
are no longer reported here and only results with the
modified-mutual graph method are given from now
on.

2.3 Discussion

The geometric retrieval accuracy lies in the range of
other respectable shape recognition systems, but lies
significantly under Adamek and O’Connor’s system
performance (84.93%), probably because their sys-
tem elegantly exploits concavity and convexity in-
formation (Adamek and O’Connor, 2004). We also
attempted to include such information into the am-
plitude space, by for instance using signed values in
B, but that reduced performance significantly.
The increase in resolution (to gain higher perfor-

mance) is not worth the square increase in matching
duration. The observation that 100 points provide a

sufficient recognition performance was also observed
in Attalla and Siy’s study (Attalla and Siy, 2005).

3 Segment Matching

In this study we particularly explore a radial descrip-
tion of segments. A radial formulation is powerful be-
cause it provides a high degree of coherence - akin to a
template - despite its relatively generic form of ’struc-
tural description’. The radial formulation is probably
the main reason why Attalla and Siy’s system per-
forms so well in comparison to point-based matching
systems.

The partitioning and abstraction process is rela-
tively complex and a detailed description is provided
somewhere else (Rasche, 2010); here it is only re-
viewed (subsection 3.1). The abstracted segments are
then related to each other using a simple radial de-
scription (subsection 3.2). How the lists of segments
are matched is described in subsection 3.3 (includ-
ing an estimation of the algorithmic complexity), fol-
lowed by an implementation and an evaluation sub-
section.

3.1 Partitioning, Segment Abstrac-

tion

The amplitude space is searched for consistent arcs,
that is arcs that appear also on adjacent scales (for
more local or global window sizes). This process reli-
ably detects arcs corresponding to human interpreta-
tion; it does not correspond to high-curvature detec-
tion, but to detection of segments between high cur-
vatures. It was shown that this partitioning is rela-
tively homologous across class instances in the MPG7
collection (under review; but see also figure 2 for some
classes that are difficult to partition). It is therefore
rated as highest in table 1, with three plus symbols,
followed by the curvature scale space (two plus sym-
bols), followed by Latecki and Lakampers polygonal
decomposition and the inner distance analysis (one
plus each). The partitioned segments are often non-
disjoint; they can be overlapping or nested, with the
latter being the result of an extraction at different
(local/global) scales.

Each segment is described by the following geomet-
ric attributes: orientation (o), the total arc length
(l = lc), degree of curvature (b) (amplitude of arc
segment), angularity (e) (1st derivative), (arc) flat-
ness (f), irregularity (i), circularity (ζ) and transition
(t). Those parameters form an 8-dimensional vector:
a(o, l, b, e, f, i, ζ, t). In the following subsection, three
more dimensions will be added, which express the a
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Figure 1: Optimization Analysis. Upper left: Precision/Recall curves for geometric and optimized com-
bination of space and segment matching; IDSC: inner-distance (& shape context) by (Ling&Jacobs,2007);
ASC+LCDP by (Ling et al., 2010). Class-individual gain for space matching (lower left) and the difference
in gain between space and segment matching (lower right).

segment’s radial relation to a pole. The average size
of the representation consists thus ca. 220 real values
(20 segments times 11 dimension values).

That the segments are sometimes nested, makes
it challenging to exploit the dynamic programming
procedure for lowest-cost path detection. Nesting re-
duces the degree of order and the lowest-cost path ap-
pears rather as a ’sparsely marked trail’ at best. The
search for such a path was therefore not attempted.

3.2 Relating Segments

A radial description requires the choice of a pole (cen-
ter). The simplest way to obtain a pole is to take the
mean of all shape pixel coordinates. For each segment
the distance (radius) and the angular ’orientation’ to
the pole is determined using the segments’ midpoints.
For orientation we separate between curved segments
(arcs) and straight segments. For curved segments we
determine the degree of bulginess, which represents
convexity and concavity. For straight segments, we
determine a tangentiality value.

• Radius (r): is the distance between pole and
segment’s midpoint normalized by the image size.

• Tangentiality (τ): is the (smaller) angle of the
intersection of the straight segment and the radial
line connecting the shape center (pc) and the seg-
ment’s midpoint (gray dashed in figure 3a). Maximal
tangentiality is therefore a right angle (segments no.
1 and 3 in figure 3); minimal tangentiality (τ=0) oc-
curs if the segment’s chord aligns (parallel) with the
radial line (segment no. 2). A segment is considered
straight if its curvature value is below a tolerance T τ

b :
∃ τi ∈ [0, π

2
] ai(b) < T τ

b .

• Bulginess (β): is the angular difference between
two direction angles (both ∈ [0, 2π]). One directional
angle is the face angle φ obtained from the ray point-
ing from a segment’s midpoint to its own halfpoint
(the midpoint of a segment’s chord) - the dotted ar-
row pointing ’north’ from a segment’s midpoint in
figure 3b. The other directional angle is the ray point-
ing from the pole to the segment’s midpoint (dashed
in figure). The angular difference lies in the interval
[0, π]; convex segments have a bulginess value in the
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Figure 2: Partitioned arcs segments in MPG7 shapes for three classes. A shaded region outlines an arc; the
darkness of the shading corresponds to a consistency measure (dark=consistent).

interval [0, π
2
), concave segments a value in the inter-

val (π
2
, π], a value β=π

2
means neither convex nor or

concave (segment 2 in figure 3b). Maximal convex-
ity and concavity are the interval’s endpoints (0 and
π, respectively, segments 1 and 3 in figure 3b). The
bulginess angle is determined if the segment was de-
tected as an arc (Φβ(lc) > 0): ∃ βi ∈ [0, π] Φβ(lc) > 0.

Due to the presence of structural variability caused
by noise (e.g. deformation) and the ever-present am-
biguity of arc/straight distinction, the two radial an-
gles tangentiality and bulginess are taken from over-
lapping intervals of the curvature value range (hence
the two different tolerances).

Adding the above three dimensions to the pre-
viously mentioned vector, the vector is now:
a(o, l, b, e, f, i, ζ, t, r, τ, β).

3.3 List Matching, Complexity

List Matching To match the list vectors of two
shapes, the segment vectors are pairwise matched to
form a similarity matrix from which the segments’
best matches are selected and integrated. The sim-
ilarity measure is called congruence measure in this
study, as no scale (size) independence is included (the
MPG7 collection shows little if any intra-class size
variations).

Given two lists of segments, ai and aj from shapes
A and B, the pair-wise (metric) similarities sim(a, a′)
of the individual vectors are taken, resulting in a
[n × m] similarity matrix, S = [simij ], with n and
m being the list lengths. The similarity measure
sim can be further refined by a weight vector v(i),
whose components correspond to the significance of
the attributes. Next, the maximum with respect to

Pc

a btangentiality bulginess

1

2

Pc

1

3

2

3

Figure 3: Two angles for a radial description. a.
Tangentiality angle for straight segments: segments
1 and 3 have the same tangentiality and are maxi-
mal (π); segment 2 shows minimal tangentiality. b.
Bulginess (directional) angle for curved (bent) seg-
ments; segment 1 is maximally concave; segment 2
shows no bulginess - it is neither convex nor concave;
segment 3 is maximally convex.

each shape is taken, returning a congruence vector g,

gA(i) = max
j

S[i, j], (1)

gB(j) = max
i

S[i, j]. (2)

A weighted sum of the individual components is
taken, with the weights w corresponding to the
segments’ significances and acting as a normalizer.
The final congruence value is a multiplication of the
weighted sum of both shapes:

cong = g′

AwA × g′

BwB. (3)
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The complete congruence measure is summarized
as congkl(ai, aj ,v,wA,wB), with v as the attribute
weight vector with dimensionality equal the number
of attributes (parameters), w as the segment weights
with dimensionality corresponding to the list lengths
(n and m), and k and l two shapes.

Complexity An informal complexity estimate is
provided. The most time consuming part is the gen-
eration of the local/global (scale) space for partition-
ing and abstraction, which is analogously complex as
creating the curvature scale space, thus O(N logN).
As the partitioned segments are merely a list of

parameters and selected coordinates (end- and mid-
points), the segment-matching duration is 2.8 mil-
liseconds only and thus negligible as compared to the
duration of generating the local/global space (next
paragraph).

3.4 Implementation and Evaluation

No subsampling occurred, meaning the full size of the
silhouette was employed. The curve partitioning and
abstraction process takes ca. 400ms on a 2.66 GHz
Intel Pentium (implemented in Matlab, whereby the
amplitude signature is generated exploiting matrix
operations, but the use of different windows is not).
T τ
b was set to 0.4. The similarity metric for two vec-

tors (sim) is determined using a Gaussian radial-basis
function, whose variance for the individual dimension
is set to their overall variance of the entire collection
(vector v).
The geometric retrieval score is at ca. 68 per-

cent for unitary attribute weights. A simple heuristic
search was employed to tune the attribute weights
v, which increased the performance to 70.48 per-
cent (see ’segment matching’ in table 1). Exploit-
ing distance optimization (modified mutual graph),
the score rises to 85.08 percent, a gain of 14.60
percent (with kNN=20 for local scaling normaliza-
tion, kNN=6 and c=2.5 for the graph). The class-
individual gain in Bull’s eye score can be more than
50 percent, and is negative for only one class (fig-
ure 1, lower right). To analyze more specifically the
differences in class-individual gain for the two match-
ing methods, we subtract the two sets of gain values
(pairwise) and observe that there can be significant
differences for some classes (plot in lower left in figure
1).

3.5 Discussion

The geometric retrieval score is rather low, but this
type of matching is also the first of its kind: only

abstracted (parameterized) segments are used and no
particular dependence on the closeness of the shape
exists. Thus, the description as such is applicable to
gray-scale images; an earlier version of this approach
was already successfully applied to gray-scale images,
yet an actual radial description was not tested yet.

One reason for the relatively low performance may
be that the segments have been aligned only radially
with respect to a pole, but that may be still an over-
simplified structural description. Further improve-
ment may be obtained by grouping segments.

4 Combined Matching

The class-individual gain analysis in figure 1 shows
that the two matching methods favor different classes
and that encourages us to combine the matching
methods. Since the processes of segment partition-
ing, abstraction and matching occur relatively rapid,
the combination of the two methods comes at little
additional temporal cost; however, it comes at mod-
erate increase in storage size, as now in addition to
the 1000-dimensional vector, also a list of vectors is
kept (an average of 1220 real values per shape).

4.1 Implementation and Evaluation

The combination occurs by adding the two dis-
tance measures for each method for a pair of shapes
(dcomb = dBij + congij). The geometric score is
84.80 percent and is thus in the range of other top-
performing systems (see ’combined’ in table 1). The
precision-recall curve for this retrieval is shown in the
upper left of figure 1: it is practically equal to the one
for the inner distance description (IDSC).

Applying the distance optimization method (mod-
ified mutual graph), the score rises to 93.71 percent.
We also tested a combination after individual opti-
mization, that is the optimized distance matrices for
each method are added (dcomb = dB,opt

ij + congoptij ),
then the score is marginally higher with 93.89 per-
cent. Applying the optimization algorithm again to
that combined matrix, we obtain 95.01 percent (gain
of only 1.12 percent), which is the second best re-
ported so far. The precision-recall curve for that lat-
ter combination is shown in figure 1 (upper left) and
is practically equal with the one of the optimized as-
pect space description (dotted) (Ling et al., 2010).

This last combination thus consists of three opti-
mizations in total, which however given the temporal
efficiency of the modified mutual graph algorithm is
again negligible. The downside of this combination
is rather that it lacks the robustness to gray-scale
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Figure 4: Ranking classes according to their proportion of correct retrieval (within the first 20 similar
retrievals).

images, but its advantage of part interpretability re-
mains.

In figure 4, the classes are ranked according to pro-
portion of correct retrieval. Classes that show a par-
ticularly low proportion are the ’device’ classes (no.
3, 4, 6 and 9), which generally are difficult to discrim-
inate due to their intra-class variability (compare also
to figure 16 in (Daliri and Torre, 2008) and figure 7
in (Adamek and O’Connor, 2004)).

We looked at the (class-wise) confusion matrix and
observed that the confusions are often within the
same ’super-ordinate category’: e.g. large mammals
are confused (elephant, camel, horse...); geometric
shapes are confused (device classes); insects are con-
fused (flies and beetles). The supplementary material
shows these confusions, for both classes and individ-
ual retrievals.

4.2 Discussion

The combination of the two descriptions (space and
segment) was obviously succesfull, although the im-
provement can not necessarily be anticipated for cer-
tain - the differences in gain in figure 1 (right col-
umn) was merely a hint. The supplementary mate-
rial contains a first step toward an analysis of this
improvement, by showing the wrong retrievals (con-
fusions) for both methods (figures 5 to 8 in suppl.
mat.). The analysis shows, that the confusions are
sometimes the same for both methods, e.g. an apple
is confused with the pocket watch, or the cup with
the (sting-)ray. This indicates that in those cases the
two measures may emphasize the same set of ’class
characteristics’. For classes, where different confu-
sions are present (for the two methods), the measures
may act complementary, that is different sets of class
characteristics contribute to a higher performance. A
deeper ’combination’ analysis may provide insights on
how to possibly improve the benefit of combining.

5 General Discussion

The combined retrieval performance evidences the
potential of the local/global analysis. Matching the
entire space is relatively straightforward, but it re-
lies on the typical constraints of a point-based (corre-
spondence) matching. To move away from these con-
straints, a radial description of segments was tested
which showed only mediocre geometric retrieval per-
formance, but excels at speed (pair matching dura-
tion of 3 ms only). A strength of the local/global
shape analysis is that it allows an exact part inter-
pretation, independent of the type of matching (figure
2).

Recent studies emphasize in particular the need
for invariance to articulation (part alignment vari-
ability), e.g. (Xu et al., 2009; Ling et al., 2010;
Gopalan et al., 2010). In those studies, the prob-
lem was formulated as a tradeoff or balance between
an increased articulation invariance and a decrease in
class discriminability. In our description, this issue of
balance was not particularly addressed. Instead, the
presented description is a rather detailed description,
in which articulation is expressed by a segment char-
acterization - it is parameterized essentially. Thus,
the potential problem that arises with such a detailed
description is that it may be too detailed and lead
to intra-class clusters, which deteriorates discrimina-
tion. Further analysis may give more clues about the
exact nature of the representation, but presently the
increase in discriminability appears to be elegantly
provided by the distance optimization methods.

The distance optimization with the modified mu-
tual graph method yielded higher gains in our work
(12.29, 14.60 and ca. 10.0 percent for space, segment
and combined matching) as opposed to the 8 percent
increase in Kontschieder et al’s study (Kontschieder
et al., 2010). There are two possible reasons for this
higher gain:
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1) Starting with a lower geometric score - as in case
of space and segment at least - allows more room for
improvement, as opposed to a geometric score that is
high already.
2) The local/global description bears a better sep-

aration between classes. As Ling et al. already as-
sume, the crucial issue is that the geometric distance
measure provides an overall good separation between
perceptually dissimilar classes - even if the geometric
score is only mediocre in comparison to some other
systems (see their section 4 in (Ling et al., 2010)).
Future work will address how grouping operations

can provide a more elaborate description and we as-
sume that this is where the greatest potential of this
framework lies. The development of such a structural
description system is undoubtly more complex than
many of the other point-based systems, however it
will be more robust in its application.
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